Skip to main content

An Integrated Prediction Model for Biometrics

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

Abstract

This paper addresses the problem of predicting recognition performance on a large population from a small gallery. Unlike the current approaches based on a binomial model that use match and non-match scores, this paper presents a generalized two-dimensional model that integrates a hypergeometric probability distribution model explicitly with a binomial model. The distortion caused by sensor noise, feature uncertainty, feature occlusion and feature clutter in the gallery data is modeled. The prediction model provides performance measures as a function of rank, population size and the number of distorted images. Results are shown on NIST-4 fingerprint database and 3D ear database for various sizes of gallery and the population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 2nd edn. Academic Press, London (2003)

    Google Scholar 

  2. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, New York (2003)

    MATH  Google Scholar 

  3. Bhanu, B., Wang, R., Tan, X.: Predicting fingerprint recognition performance from a small gallery. In: ICPR Workshop on Biometrics: Challenges arising from Theory to Practice, pp. 47–50 (2004)

    Google Scholar 

  4. Tan, X., Bhanu, B.: On the fundamental performance for fingerprint matching. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 18–20 (2003)

    Google Scholar 

  5. Hong, E.S., Bhanu, B., Jones, G., Qian, X.B.: Performance modeling of vote-based object recognition. In: Proceedings Radar Sensor Technology IX, August 2003, vol. 5077, pp. 157–166 (2003)

    Google Scholar 

  6. Johnson, Y., Sun, J., Bobick, A.F.: Predicting large population data cumulative match characteristic performance from small population data. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 821–829. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Wayman, J.L.: Error-rate equations for the general biometric system. IEEE Robotics & Automation Magazine 6(1), 35–48 (1999)

    Article  Google Scholar 

  8. Daugman, J.: The importance of being random: statistical principles of iris recognition. Pattern Recognition 36(2), 279–291 (2003)

    Article  Google Scholar 

  9. Phillips, P.J., Grother, P., Micheals, R.J., Blackburn, D.M., Tabassi, E., Bone, M.: Face Recognition Vendor Test 2002. Evaluation Report (March 2003)

    Google Scholar 

  10. Johnson, Y., Sun, J., Boick, A.F.: Using similarity scores from a small gallery to estimate recognition performance for large galleries. In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures, pp. 100–103 (2003)

    Google Scholar 

  11. Grother, P., Phillips, P.J.: Models of large population recognition performance. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 68–75 (2004)

    Google Scholar 

  12. Tan, X., Bhanu, B.: Robust fingerprint identification. In: Proc. IEEE International Conference on Image Processing (ICIP), vol. 1, pp. 277–280 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, R., Bhanu, B., Chen, H. (2005). An Integrated Prediction Model for Biometrics. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_37

Download citation

  • DOI: https://doi.org/10.1007/11527923_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics