Skip to main content

A Study on Iris Image Restoration

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2387 Accesses

Abstract

Because iris recognition uses the unique patterns of the human iris, it is essential to acquire the iris images at high quality for accurate recognition. Defocusing reduces the quality of the iris image and the performance of iris recognition, consequently. In order to acquire a focused iris image at high quality, an iris recognition camera must control the focal length of the moving lens. However, that causes the cost and size of iris camera to be increased and that needs complicated auto-focusing algorithm, also. To overcome such problems, we propose new method of iris image restoration. Experimental results show that the total recognition time is reduced as much as 390ms on average with the proposed restoration algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Daugman, J.G.: High confidence visual recognition of personals by a test of statistical independence. IEEE Trans. Pattern Anal. Machine Intell. 15(11), 1148–1160 (1993)

    Article  Google Scholar 

  2. Jain, A.K.: Biometrics: Personal Identification in Networked Society. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  3. Daugman, J.G.: How Iris Recognition Works. IEEE Trans. on Circuits and Systems for Video Technology 14(1), 21–30 (2004)

    Article  Google Scholar 

  4. van der Gracht, J., Pauca, V.P., Setty, H., Narayanswamy, R., Plemmons, R.J., Prasad, S., Torgersen, T.: Iris recognition with enhanced depth-of-field image acquisition. In: Proceedings of SPIE, vol. 5438, pp. 120–129 (2004)

    Google Scholar 

  5. Lee, J.-H., Kim, K.-S., Nam, B.-D., Lee, J.-C., Kwon, Y.-M., Kim, H.G.: Implementation of a passive automatic focusing algorithm for digital still carmera. IEEE Transactions on Consumer Electronics 41(3), 449–454 (1995)

    Article  Google Scholar 

  6. Javis, R.A.: Focus Optimization Criteria for Computer Image Processing. Microscope 24(2), 163–180

    Google Scholar 

  7. Nayar, S.K., Nakagawa, Y.: Shape from Focus. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(8), 824–831 (1994)

    Article  Google Scholar 

  8. Choi, K.-S., Lee, J.-S., Ko, S.-J.: New Auto-focusing Technique Using the Frequency Selective Weight Median Filter for Video Cameras. IEEE Trans. on Consumer Electronics 45(3), 820–827 (1999)

    Article  Google Scholar 

  9. Tenenbaum, J.M.: Accommodation in computer vision, Ph. D. thesis, Stanford University (1970)

    Google Scholar 

  10. Haruki, T., Kikuchi, K.: Video Camera System Using Fuzzy Logic. IEEE Transactions on Consumer Electronics 38(3), 624–634 (1992)

    Article  Google Scholar 

  11. Ooi, K., Izumi, K., Nozaki, M., Takeda, I.: An Advanced Auto-focusing System for Video Camera Using Quasi Condition Reasoning. IEEE Transactions on Consumer Electronics 36(3), 526–529 (1990)

    Article  Google Scholar 

  12. Hanma, K., Masuda, M., Nabeyama, H., Saito, Y.: Novel Technologies for Automatic Focusing and White Balancing of Solid State Color Video Camera. IEEE Transactions on Consumer Electronics CE-29(3), 376–381 (1983)

    Article  Google Scholar 

  13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  14. http://www.sinobiometrics.com

  15. Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Processing Magazine 13, 43–64 (1996)

    Article  Google Scholar 

  16. Savakis, A.E.: Blur Identification by Residual Spectral Matching. IEEE Transactions on Image Processing 2(2), 141–151 (1993)

    Article  Google Scholar 

  17. http://www.panasonic.com/business/security/biometrics_data.asp

  18. http://www.polhemus.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kang, B.J., Park, K.R. (2005). A Study on Iris Image Restoration. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_4

Download citation

  • DOI: https://doi.org/10.1007/11527923_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics