Skip to main content

Towards Scalable View-Invariant Gait Recognition: Multilinear Analysis for Gait

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2324 Accesses

Abstract

In this paper we introduce a novel approach for learning view-invariant gait representation that does not require synthesizing particular views or any camera calibration. Given walking sequences captured from multiple views for multiple people, we fit a multilinear generative model using higher-order singular value decomposition which decomposes view factors, body configuration factors, and gait-style factors. Gait-style is a view-invariant, time-invariant, and speed-invariant gait signature that can then be used in recognition. In the recognition phase, a new walking cycle of unknown person in unknown view is automatically aligned to the learned model and then iterative procedure is used to solve for both the gait-style parameter and the view. The proposed framework allows for scalability to add a new person to already learned model even if a single cycle of a single view is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. BenAdbelkader, C., Cutler, R., Davis, L.: Stride and cadence as a biometric in automatic person identification and verification. In: Proc. FGR, pp. 357–363 (2002)

    Google Scholar 

  2. Bhanu, B., Han, J.: Individual recognition by kinematic-based gait analysis. In: Proc. ICPR, vol. 3, pp. 343–346 (2002)

    Google Scholar 

  3. Collins, R., Gross, R., Shi, J.: Silhouette-based human identification from body shape and gait. In: Proc. FGR, pp. 351–366 (2002)

    Google Scholar 

  4. Cunado, D., Nixon, M.S., Carter, J.: Automatic extraction and description of human gait models for recognition purposes. Computer Vision and Image Understanding 90, 1–41 (2003)

    Article  Google Scholar 

  5. Elgammal, A.: Nonlinear generative models for dynamic shape and dynamic appearance. In: Proc. Int. Workshop GMBV (2004)

    Google Scholar 

  6. Elgammal, A., Lee, C.-S.: Separating style and content on a nonlinear manifold. In: Proc. CVPR, pp. 478–485 (2004)

    Google Scholar 

  7. Gross, R., Shi, J.: The cmu motion of body (mobo) database. Technical Report CMU-RITR- 01-18, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (June 2001)

    Google Scholar 

  8. Han, J., Bhanu, B.: Statistical feature fusion for gait-based human recognition. In: Proc. CVPR, pp. 842–847 (2004)

    Google Scholar 

  9. He, Q., Debrunner, C.: Individual recognition from periodic activity using hidden markov models. In: IEEE Workshop on Human Motion, pp. 47–52 (2000)

    Google Scholar 

  10. Huang, P., Haris, C., Nixon, M.: Recogising humans by gait via parametric canonical space. Artificial Intelligence in Engineering 13, 359–366 (1999)

    Article  Google Scholar 

  11. Johnson, A.Y., Bobick, A.F.: A multi-view method for gait recognition using static body parameters. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 301–311. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Kale, A.K.R.: Chowdhury, and R. Chellappa. Towards a view invariant gait recognition algorithm. In: Proc. on Advanced Video and Signal Based Surveillance, pp. 143–150 (2003)

    Google Scholar 

  13. Kale, A., Sundaresan, A.N., Rajagopalan, N.P., Cuntoor, A.K., Roy-Chowdhury, V.: Kruger, and R. Chellappa. Identification of human using gait. IEEE Trans. Image Processing 13(9), 1163–1173 (2004)

    Article  Google Scholar 

  14. Lathauwer, L.D., de Moor, B., Vandewalle, J.: A multilinear singular value decomposiiton. SIAM Journal On Matrix Analysis and Applications 21(4), 1253–1278 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lathauwer, L.D., de Moor, B., Vandewalle, J.: On the best rank-1 and rank-(r1, r2,., rn) approximation of higher-order tensors. SIAM Journal on Matrix Analysis and Applications 21(4), 1324–1342 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lee, C.-S., Elgammal, A.: Gait style and gait content: Bilinear model for gait recogntion using gait re-sampling. In: Proc. FGR, pp. 147–152 (2004)

    Google Scholar 

  17. Lee, L., Dalley, G., Tieu, K.: Learning pedestrian models for silhouette refinement. In: Proc. ICCV, pp. 663–670 (2003)

    Google Scholar 

  18. Liu, Y., Collins, R., Tsin, Y.: Gait sequence analysis using frienze patterns. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 657–671. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Liu, Z., Sarkar, S.: Simplest representation yet for gait recognition: Averaged silhouette. In: Proc. ICPR, pp. 211–214 (2004)

    Google Scholar 

  20. Murase, H., Sakai, R.: Moving object recognition in eigenspace representation: gait analysisand lip reading. Pattern Recognition Letters 17, 155–162 (1996)

    Article  Google Scholar 

  21. Phillips, P.J., Sarkar, S., Robledo, I., Grother, P., Bowyer, K.: Baseline results for the challenge problem of human id using gait analysis. In: Proc. FGR, pp. 137–142 (2002)

    Google Scholar 

  22. Poggio, T., Girosi, F.: Networks for approximation and learning. Proceedings of the IEEE 78(9), 1481–1497 (1990)

    Article  Google Scholar 

  23. Shakhnarovich, G., Lee, L., Darrell, T.: Integrated face and gait recognition from multiple views. In: Proc. CVPR, pp. 439–446 (2001)

    Google Scholar 

  24. Tanawongsuwan, R., Bobick, A.: Modelling the effects of walking speed on appearancebased gait recognition. In: Proc. CVPR, pp. 783–790 (2004)

    Google Scholar 

  25. Tenenbaum, J.B., Freeman, W.T.: Separating style and content with biliear models. Neural Computation 12, 1247–1283 (2000)

    Article  Google Scholar 

  26. Tolliver, D., Collins, R.T.: Gait shape estimation for identification. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 734–742. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Vasilescu, M.A.O.: Human motion signatures: Analysis, synthesis, recogntion. In: Proc. ICPR, vol. 3, pp. 456–460 (2002)

    Google Scholar 

  28. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: TensorFaces. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 447–460. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  29. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear subspace analysis of image ensembles. In: Proc. CVPR (2003)

    Google Scholar 

  30. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. PAMI 25(12), 1505–1518 (2003)

    Google Scholar 

  31. Zhao, G., Chen, R., Liu, G., Li, H.: Amplitude spectrum-based gait recognition. In: Proc. FGR, pp. 23–28 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, CS., Elgammal, A. (2005). Towards Scalable View-Invariant Gait Recognition: Multilinear Analysis for Gait. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_41

Download citation

  • DOI: https://doi.org/10.1007/11527923_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics