Skip to main content

Addressing the Vulnerabilities of Likelihood-Ratio-Based Face Verification

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2296 Accesses

Abstract

Anti-spoofing protection of biometric systems is always a serious issue in real-life applications of an automatic personal verification system. Despite the fact that face image is the most common way of identifying persons and one of the most popular modalities in automatic biometric authentication, little attention has been given to the spoof resistance of face verification algorithms. In this paper, we discuss how a system based on DCT features with a likelihood-ratio-based classifier can be easily spoofed by adding white Gaussian noise to the test image. We propose a strategy to address this problem by measuring the quality of the test image and of the extracted features before making a verification decision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bazen, A.M., Veldhuis, R.N.J.: Likelihood-Ratio-Based Biometric Verification. IEEE Transactions on Circuits and Systems for Video Technology 14(1) (January 2004)

    Google Scholar 

  2. Bengio, S., Bimbot, F., Mariethoz, J., Popovici, V., Porée, F., Bailly-Balliere, E., Matas, G., Ruiz, B.: Experimental protocol on the BANCA database. Technical Report IDIAP-RR 02-05, IDIAP (2002), www.idiap.ch

  3. Kryszczuk, K., Drygajlo, A.: Color Correction For Face Detection Based on Human Visual Perception Metaphor. In: Proc. of the Workshop on Multimodal User Authentication, Santa Barbara, CA, USA, pp. 138–143 (2003)

    Google Scholar 

  4. Lucey, S.: The Symbiotic Relationship of Parts and Monolythic Face Representations in Verification. In: International Workshop on Face Processing in Video (FPIV), Washington D.C (2004)

    Google Scholar 

  5. Lucey, S., Chen, T.: A GMM Parts Based Face Representation for Improved Verification through Relevance Adaptation. In: Proc. of the IEEE CSS Conf. on Computer Vision and Pattern Recognition, Washington, USA, vol. 2, pp. 855–861 (2004)

    Google Scholar 

  6. Messer, K., Kittler, J., Sadeghi, M., Hamouz, M., Kostyn, A., Marcel, S., Bengio, S., Cardinaux, F., Sanderson, C., Poh, N., Rodriguez, Y., Kryszczuk, K., Czyz, J., Vandendorpe, L., Ng, J., Cheung, H., Tang, B.: Face authentication competition on the BANCA database. In: Proc. of the International Conference on Biometric Authentication, ICBA, Hong Kong (2004)

    Google Scholar 

  7. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker Verification Using Adapted Gaussian Mixture Models. Digital Signal Processing 10, 19–41 (2000)

    Article  Google Scholar 

  8. Sanderson, C.: Automatic Person Verification Using Speech and Face Information. PhD Thesis, Griffith University, Australia (August 2002) (revised Feburary 2003)

    Google Scholar 

  9. Sanderson, C., Bengio, S.: Robust Features for Frontal Face Authentication in Difficult Image Conditions. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Saban, M., Sanderson, C.: On Local Features for Face Verificaton. Technical Report IDIAP-RR 04-36, IDIAP (2004), www.idiap.ch

  11. Turk, M.A., Pentland, A.P.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  12. Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Literature Survey. UMD CfAR Technical Report CAR-TR948 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kryszczuk, K., Drygajlo, A. (2005). Addressing the Vulnerabilities of Likelihood-Ratio-Based Face Verification. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_44

Download citation

  • DOI: https://doi.org/10.1007/11527923_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics