Abstract
Anti-spoofing protection of biometric systems is always a serious issue in real-life applications of an automatic personal verification system. Despite the fact that face image is the most common way of identifying persons and one of the most popular modalities in automatic biometric authentication, little attention has been given to the spoof resistance of face verification algorithms. In this paper, we discuss how a system based on DCT features with a likelihood-ratio-based classifier can be easily spoofed by adding white Gaussian noise to the test image. We propose a strategy to address this problem by measuring the quality of the test image and of the extracted features before making a verification decision.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bazen, A.M., Veldhuis, R.N.J.: Likelihood-Ratio-Based Biometric Verification. IEEE Transactions on Circuits and Systems for Video Technology 14(1) (January 2004)
Bengio, S., Bimbot, F., Mariethoz, J., Popovici, V., Porée, F., Bailly-Balliere, E., Matas, G., Ruiz, B.: Experimental protocol on the BANCA database. Technical Report IDIAP-RR 02-05, IDIAP (2002), www.idiap.ch
Kryszczuk, K., Drygajlo, A.: Color Correction For Face Detection Based on Human Visual Perception Metaphor. In: Proc. of the Workshop on Multimodal User Authentication, Santa Barbara, CA, USA, pp. 138–143 (2003)
Lucey, S.: The Symbiotic Relationship of Parts and Monolythic Face Representations in Verification. In: International Workshop on Face Processing in Video (FPIV), Washington D.C (2004)
Lucey, S., Chen, T.: A GMM Parts Based Face Representation for Improved Verification through Relevance Adaptation. In: Proc. of the IEEE CSS Conf. on Computer Vision and Pattern Recognition, Washington, USA, vol. 2, pp. 855–861 (2004)
Messer, K., Kittler, J., Sadeghi, M., Hamouz, M., Kostyn, A., Marcel, S., Bengio, S., Cardinaux, F., Sanderson, C., Poh, N., Rodriguez, Y., Kryszczuk, K., Czyz, J., Vandendorpe, L., Ng, J., Cheung, H., Tang, B.: Face authentication competition on the BANCA database. In: Proc. of the International Conference on Biometric Authentication, ICBA, Hong Kong (2004)
Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker Verification Using Adapted Gaussian Mixture Models. Digital Signal Processing 10, 19–41 (2000)
Sanderson, C.: Automatic Person Verification Using Speech and Face Information. PhD Thesis, Griffith University, Australia (August 2002) (revised Feburary 2003)
Sanderson, C., Bengio, S.: Robust Features for Frontal Face Authentication in Difficult Image Conditions. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, Springer, Heidelberg (2003)
Saban, M., Sanderson, C.: On Local Features for Face Verificaton. Technical Report IDIAP-RR 04-36, IDIAP (2004), www.idiap.ch
Turk, M.A., Pentland, A.P.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)
Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Literature Survey. UMD CfAR Technical Report CAR-TR948 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kryszczuk, K., Drygajlo, A. (2005). Addressing the Vulnerabilities of Likelihood-Ratio-Based Face Verification. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_44
Download citation
DOI: https://doi.org/10.1007/11527923_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27887-0
Online ISBN: 978-3-540-31638-1
eBook Packages: Computer ScienceComputer Science (R0)