Skip to main content

A Classification Approach to Multi-biometric Score Fusion

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2481 Accesses

Abstract

The use of biometrics for identity verification of an individual is increasing in many application areas such as border/port entry/exit, access control, civil identification and network security. Multi-biometric systems use more than one biometric of an individual. These systems are known to help in reducing false match and false non-match errors compared to a single biometric device. Several algorithms have been used in literature for combining results of more than one biometric device. In this paper we discuss a novel application of random forest algorithm in combining matching scores of several biometric devices for identity verification of an individual. Application of random forest algorithm is illustrated using matching scores data on three biometric devices: fingerprint, face and hand geometry. To investigate the performance of the random forest algorithm, we conducted experiments on different subsets of the original data set. The results of all the experiments are exceptionally encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A., Ross, A., Prabhakar, S.: An Introduction to Biometric Recognition. IEEE Transactions on Circuits and Systems for Video Technology. Special Issue on Image- and Video-Based Biometrics (2003)

    Google Scholar 

  2. http://www.cs.rit.edu/~jct9345

  3. Lee, D., Srihari, S.N.: Handprinted Digit Recognition: A Comparison of Algorithms. In: The Proceedings of the 3rd International Workship on Frontiers in Handwriting Recognition, Buffalo, NY, pp. 153–162 (1993)

    Google Scholar 

  4. Lam, L., Suen, C.Y.: Application of Majority Voting to Pattern Recognition: An Analysis of Its Behavior and Performance. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans 27(5) (1997)

    Google Scholar 

  5. Zuev, Y., Ivanon, S.: The Voting as a Way to Increase the Decision Reliability. In: Foundations of Information/Decision Fusion with Applications to Engineering Problems, Washington, DC, pp. 206–210 (1996)

    Google Scholar 

  6. Tou, J.T., Gonzalez, R.C.: Pattern Recognition Principles. Addison-Wesley Publishing Co., Reading (1981)

    Google Scholar 

  7. Nandakumar, K., Jain, A., Ross, A.: Score Normalization in Multimodal Biometric Systems, Available at: http://biometrics.cse.mse.edu

  8. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition. IEEE Transactions on Systems, Man, and Cybernetics 22(3) (1992)

    Google Scholar 

  9. Verlinde, P., Chollet, G.: Comparing Decision Fusion Paradigms Using k-NN Based Classifiers, Decision Trees and Logistic Regression in a Multimodal Identity Verification Application. In: Proceedings of the 2nd International Conference on Audio and Video-Based Biometric Person Authentication (AVBPA), Washington, DC, pp. 189–193 (1999)

    Google Scholar 

  10. Tahani, H., Keller, J.M.: Information Fusion in Computer Vision Using the Fuzzy Integral. IEEE Transactions on Systems, Man and Cybernetics 20(3), 733–741 (1990)

    Article  Google Scholar 

  11. Lipnickas, A.: Classifiers Fusion with Data Dependent Aggregation Schemes. In: 7th International Conference on Information Networks. Systems and Technologies ICINASTe-2001

    Google Scholar 

  12. Ceccarelli, M., Petrosino, A.: Multi-feature Adaptive Classifiers for SAR Image Segmentation. Neurocomputing 14, 345–363 (1997)

    Article  Google Scholar 

  13. Ross, A., Jain, A.: Information Fusion in Biometrics. Pattern Recognition Letters 24, 2115–2125 (2003)

    Article  Google Scholar 

  14. Kittler, J., Hatef, M., Duin, R., Matas, J.: On Combining Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3) (1998)

    Google Scholar 

  15. Snelick, R., Indovina, M., Yen, J., Mink, A.: Multimodal Biometrics: Issues in Design and Testing. In: Proceedings of the 5th International Conference on Multimodal Interfaces, Vancouver, Canada (2003)

    Google Scholar 

  16. Chen, C., Liaw, A., Breiman, L.: Using Random Forest to Learn Imbalanced Data, Available at: http://stat-www.berkeley.edu/users/chenchao/666.pdf

  17. Remlinger, K.S.: Introduction and Application of Random Forest on High Throughput Screening Data from Drug Discovery, Available at http://www4.ncsu.edu/~ksremlin

  18. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  19. Breiman, L., Cutler, A.: Random Forests: Classification/Clustering (2004), Available at http://www.stat.berkeley.edu/users/breiman/RandomForests

  20. Breiman, L.: Wald Lecture II, Looking Inside the Black Box, Available at: http://www.stat.berkeley.edu/users/breiman

  21. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, Belmont (1984)

    MATH  Google Scholar 

  22. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  23. Liaw, A., Chen, C., Breiman, L.: Learning From Extremely Imbalanced Data With Random Forests. In: Computational Biology and Bioinformatics, 36th Symposium on the Interface, Baltimore, Maryland (2004)

    Google Scholar 

  24. Oh, J., Laubach, M., Luczak, A.: Estimating Neuronal Variable Importance with Random Forest. In: Proceedings of the 29th Annual Northeast Bioengineering Conference, NJIT, Newark, NJ (2003)

    Google Scholar 

  25. Speed, T. (ed.): Statistical Analysis of Gene Expression Microarray Data. Chapman & Hall/CRC (2003)

    Google Scholar 

  26. http://www.statsoftinc.com/textbook/stclatre.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, Y., Cukic, B., Singh, H. (2005). A Classification Approach to Multi-biometric Score Fusion. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_50

Download citation

  • DOI: https://doi.org/10.1007/11527923_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics