Skip to main content

Multi-biometrics 2D and 3D Ear Recognition

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2388 Accesses

Abstract

Multi-biometric 2D and 3D ear recognition are explored. The data set used represents over 300 persons, each with images acquired on at least two different dates. Among them, 169 persons have images taken on at least four different dates. Based on the results of three algorithms applied on 2D and 3D ear data, various multi-biometric combinations were considered, and all result in improvement over a single biometric. A new fusion rule using the interval distribution between rank 1 and rank 2 outperforms other simple fusion rules. In general, all the approaches perform better with multiple representations of a person.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chang, K., Bowyer, K., Barnabas, V.: Comparison and combination of ear and face images in appearance-based biometrics. IEEE Trans. Pattern Analysis and Machine Intelligence. 25, 1160–1165 (2003)

    Article  Google Scholar 

  2. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  3. Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  4. Chang, K., Bowyer, K., Flynn, P.: Face recognition using 2D and 3D facial data. In: Workshop on Multimodal User Authentication, pp. 25–32 (2003)

    Google Scholar 

  5. Beveridge, R., She, K., Draper, B., Givens, G.: Evaluation of face recognition algorithm (release version 4.0), www.cs.colostate.edu/evalfacerec/index.html

  6. Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans. Pattern Analysis and Machine Intelligence, 239–256 (1992)

    Google Scholar 

  7. Yan, P., Bowyer, K.W.: Ear biometrics using 2d and 3d images. Technical Report TR 2004-31, CSE Department, University of Notre Dame (2004)

    Google Scholar 

  8. Jain, A., Ross, A.: Multibiometric system. Communications of the ACM 47(1), 34–40 (2004)

    Article  Google Scholar 

  9. Bigün, E., Bigün, J., Fischer, S.S.: Expert conciliation for multi modal person authentication systems using Bayesian statistics. In: Bigün, J., Borgefors, G., Chollet, G. (eds.) AVBPA 1997. LNCS, vol. 1206, pp. 291–300. Springer, Heidelberg (1997)

    Google Scholar 

  10. Brunelli, R., Falavigna, D.: Person identification using multiple cues. IEEE Trans. Pattern Analysis and Machine Intelligence 12(10), 955–966 (1995)

    Article  Google Scholar 

  11. Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans. Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)

    Article  Google Scholar 

  12. Ross, A., Jain, A.: Information fusion in biometrics. Pattern Recognition Letters 24, 2115–2125 (2003)

    Article  Google Scholar 

  13. Chang, K., Bowyer, K., Flynn, P.: An evaluation of multi-modal 2d+3d face biometrics. IEEE Trans. Pattern Analysis and Machine Intelligence (2005) (accepted to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, P., Bowyer, K.W. (2005). Multi-biometrics 2D and 3D Ear Recognition. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_52

Download citation

  • DOI: https://doi.org/10.1007/11527923_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics