Skip to main content

Performance Evaluation and Prediction for 3D Ear Recognition

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2282 Accesses

Abstract

Existing ear recognition approaches do not give theoretical or experimental performance prediction. Therefore, the discriminating power of ear biometric for human identification cannot be evaluated. This paper addresses two interrelated problems: (a) proposes an integrated local descriptor for representation to recognize human ears in 3D. Comparing local surface descriptors between a test and a model image, an initial correspondence of local surface patches is established and then filtered using simple geometric constraints. The performance of the proposed ear recognition system is evaluated on a real range image database of 52 subjects. (b) A binomial model is also presented to predict the ear recognition performance. Match and non-matched distances obtained from the database of 52 subjects are used to estimate the distributions. By modeling cumulative match characteristic (CMC) curve as a binomial distribution, the ear recognition performance can be predicted on a larger gallery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Iannarelli, A.: Ear Identification. Forensic Identification Series. Paramont Publishing Company (1989)

    Google Scholar 

  2. Burge, M., Burger, W.: Ear biometrics in computer vision. In: Proc. Int. Conf. on Pattern Recognition, vol. 2, pp. 822–826 (2000)

    Google Scholar 

  3. Hurley, D., Nixon, M., Carter, J.: Automatic ear recognition by force field transformations. IEE Colloquium on Visual Biometrics, 7/1 –7/5 (2000)

    Google Scholar 

  4. Chang, K.C., Bowyer, K.W., Sarkar, S., Victor, B.: Comparison and combination of ear and face images in appearance-based biometrics. IEEE Trans. Pattern Analysis and Machine Intelligence 25, 1160–1165 (2003)

    Article  Google Scholar 

  5. Bhanu, B., Chen, H.: Human ear recognition in 3D. In: Workshop on Multimodal User Authentication, pp. 91–98 (2003)

    Google Scholar 

  6. Bronstein, A., Bronstein, M., Kimmel, R.: Expression-invariant 3D face recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 62–70. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Chang, K.C., Bowyer, K.W., Flynn, P.J.: Multi-modal 2D and 3D biometrics for face recognition. In: IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures, pp. 187–194 (2003)

    Google Scholar 

  8. Chua, C.S., Han, F., Ho, Y.: 3D human face recognition using point signatures. In: Int. Conf. on Automatic Face and Gesture Recognition, pp. 233–238 (2000)

    Google Scholar 

  9. Lee, J.C., Milios, E.: Matching range images of human faces. In: Proc. Int. Conf. on Computer Vision, pp. 722–726 (1990)

    Google Scholar 

  10. Lu, X., Colbry, D., Jain, A.K.: Three-dimensional model based face recognition. In: Proc. Int. Conf. on Pattern Recognition, vol. 1, pp. 362–366 (2004)

    Google Scholar 

  11. Bhanu, B., Wang, R., Tan, X.: Predicting fingerprint recognition performance from a small gallery. In: ICPR Workshop on Biometrics: Challenges arising from Theory to Practice, pp. 47–50 (2004)

    Google Scholar 

  12. Tan, X., Bhanu, B.: On the fundamental performance for fingerprint matching. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 499–504 (2003)

    Google Scholar 

  13. Johnson, A.Y., Sun, J., Boick, A.F.: Predicting large population data cumulative match characteristic performance from small population data. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 821–829. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Wayman, J.L.: Error-rate equations for the general biometric system. IEEE Robotics & Automation Magazine 6, 35–48 (1999)

    Article  Google Scholar 

  15. Daugman, J.: The importance of being random: statistical principles of iris recognition. Pattern Recognition 36, 279–291 (2003)

    Article  Google Scholar 

  16. Johnson, A.Y., Sun, J., Boick, A.F.: Using similarity scores from a small gallery to estimate recognition performance for large galleries. In: IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures, pp. 100–103 (2003)

    Google Scholar 

  17. Grother, P., Phillips, P.J.: Models of large population recognition performance. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 68–75 (2004)

    Google Scholar 

  18. Besl, P., Mckay, N.D.: A method of registration of 3-D shapes. IEEE Trans. Pattern Analysis and Machine Intelligence 14, 239–256 (1992)

    Article  Google Scholar 

  19. Flynn, P., Jain, A.: On reliable curvature estimation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 110–116 (1989)

    Google Scholar 

  20. Dorai, C., Jain, A.: COSMOS-A representation scheme for free-form surfaces. In: Proc. Int. Conf. on Computer Vision, pp. 1024–1029 (1995)

    Google Scholar 

  21. Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Analysis and Machine Intelligence 21, 433–449 (1999)

    Article  Google Scholar 

  22. Koenderink, J.J., Doorn, A.V.: Surface shape and curvature scales. Image Vision Computing 10, 557–565 (1992)

    Article  Google Scholar 

  23. Schiele, B., Crowley, J.: Recognition without correspondence using multidimensional receptive field histograms. International Journal of Computer Vision 36, 31–50 (2000)

    Article  Google Scholar 

  24. Horn, B.: Close-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America 4, 629–642 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, H., Bhanu, B., Wang, R. (2005). Performance Evaluation and Prediction for 3D Ear Recognition. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_78

Download citation

  • DOI: https://doi.org/10.1007/11527923_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics