Skip to main content

Speaker Identification Using the VQ-Based Discriminative Kernels

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2282 Accesses

Abstract

In this paper, a class of VQ-based discriminative kernel is proposed for speaker identification. Vector quantization is a well known method in speaker recognition, but its performance is not superior. The distortion of an utterance is accumulated, but the distortion source distribution on the codebook is discarded. We map an utterance to a vector by adopting the distribution and the average distortions on every code vector. Then the SVMs are used for classification. A one-versus-rest fashion is used for the problem of multiple classifications. Results on YOHO in text-independent case show that the method can improve the performance greatly and is comparative with the VQ and the basic GMM’s performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vapnik, V.: Statistical Learning Theory. Johm Wiley and Sons, New York (1998)

    MATH  Google Scholar 

  2. Wan, V., Campbell, W.M.: Support Vector Machines for Speaker Verification and Identification. In: Proc. Neural Nerworks for Signal Processing X, pp. 775–784 (2000)

    Google Scholar 

  3. Jakkola, T.S., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Kearns, M.S., Solla, S.A., Cohn, D.A. (eds.) Advances in Neural Information Processing System 11, MIT Press, Cambridge (1999)

    Google Scholar 

  4. Smith, N., Gales, M., Niranjan, M.: Data-dependent kernel in SVM classification of speech patterns. Tech.Rep. CUED/F-INFENG/TR.387, Cambridge University Engineering Department (2001)

    Google Scholar 

  5. Rosenberg, A.E., Soong, F.K.: Evaluation of a vector quantization talker recognition system in text independent and text dependent modes. Comput. Speech Lang. 22, 143–157 (1987)

    Article  Google Scholar 

  6. Linde, Y., Buzo, A., Gray, R.M.: An algorithm for vector quantizer desigh. IEEE Trans. Commun. 20, 84–95 (1980)

    Article  Google Scholar 

  7. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78, 1464–1480 (1990)

    Article  Google Scholar 

  8. Fine, S., Navratil, J., Gopinath, R.A.: A hybrid GMM/SVM approach to speaker recognition. In: ICASSP (2001)

    Google Scholar 

  9. Shimodaira, H., Noma, K., Nakai, M., Sagayama, S.: Dynamic Time-Alignment Kernel in Support Vector Machine. In: NIPS, pp. 921–928 (2001)

    Google Scholar 

  10. Wan, V., Renals, S.: Valuaution of Kernel Methods for Speaker and Identification. In: Proc. ICASSP (2002)

    Google Scholar 

  11. Campbell, W.M.: Generalized Linear Discriminant Sequence Kernel For Speaker Recognition. In: Proc. ICASSP, pp. 161–164 (2002)

    Google Scholar 

  12. Burges, C.J.C.: A tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2(2), 1–47 (1998)

    Article  Google Scholar 

  13. Reynolds, D.A., Rose, R.C.: Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans. Speech Audio Processing 3, 72–83 (1995)

    Article  Google Scholar 

  14. Platt, J.: Fast training of SVMs using sequential minimal optimisation. In: Advances in Kernel Methods: Support Vector Learing, pp. 185–208. MIT press, Cambridge (1999)

    Google Scholar 

  15. Schmidt, M., Gish, H.: Speaker Identification via Support Vector Machies. In: Proc. ICASSP, pp. 105–108 (1996)

    Google Scholar 

  16. Kinununen, T., Franti, P.: Speaker Discriminative Weighting Method for VQ-based Speaker Identification. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 150–156. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lei, Z., Yang, Y., Wu, Z. (2005). Speaker Identification Using the VQ-Based Discriminative Kernels. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_83

Download citation

  • DOI: https://doi.org/10.1007/11527923_83

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics