Skip to main content

Biometric Recognition Using Feature Selection and Combination

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 1568 Accesses

Abstract

Most of the prior work in biometric literature has only emphasized on the issue of feature extraction and classification. However, the critical issue of examining the usefulness of extracted biometric features has been largely ignored. Feature evaluation/selection helps to identify and remove much of the irrelevant and redundant features. The small dimension of feature set reduces the hypothesis space, which is critical for the success of online implementation in personal recognition. This paper focuses on the issue of feature subset selection and its effectiveness in a typical bimodal biometric system. The feature level fusion has not received adequate attention in the literature and therefore the performance improvement in feature level fusion using feature subset selection is also investigated. Our experimental results demonstrate that while majority of biometric features are useful in predicting the subjects identity, only a small subset of these features are necessary in practice for building an accurate model for identification. The comparison and combination of features extracted from hand images is evaluated on the diverse classification schemes; naive Bayes (normal, estimated, multinomial), decision trees (C4.5, LMT), k-NN, SVM, and FFN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, C., Wechsler, H.: Independent component analysis of Gabor features for face recognition. IEEE Trans. Neural Networks 14, 919–928 (2003)

    Article  Google Scholar 

  2. Zhang, D., Kong, W.K., You, J., Wong, M.: On-line palmprint identification. IEEE Trans. Patt. Anal. Machine Intell. 25, 1041–1050 (2003)

    Article  Google Scholar 

  3. Sanchez-Reillo, R., Sanchez-Avila, C., Gonzales-Marcos, A.: Biometric identification through hand geometry measurements. IEEE Trans. Patt. Anal. Machine Intell. 22, 1168–1171 (2000)

    Article  Google Scholar 

  4. Ross, A., Jain, A.K.: Information fusion in Biometrics. Pattern Recognition Lett. 24, 2115–2125 (2003)

    Article  Google Scholar 

  5. Langley, P., Sage, S.: Scaling to domains with irrelevant features. In: Greiner, R. (ed.) Computational Learning Theory and Neural Learning Systems, vol. 4, MIT Press, Cambridge (1994)

    Google Scholar 

  6. Aha, D.W., Kibler, D., Albert, M.K.: Instance based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  7. Langley, P., Sage, S.: Induction of selective Bayesian classifiers. In: Proc. 10th Intl. Conf. Uncertainty in Artificial Intelligence, Seattle, W. A, Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  8. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, Los Altos, Los Altos (1993)

    Google Scholar 

  9. Jain, A.K., Ross, A., Prabhakar, S.: ” An Introduction to Biometric Recognition". IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on Image- and Video-Based Biometrics 14(1), 4–20 (2004)

    Google Scholar 

  10. Hall, M.A., Smith, L.A.: Practical feature subset selection for machine learning. In: Proc. 21st Australian Computer Science Conference, pp. 181–191. Springer, Heidelberg (1998)

    Google Scholar 

  11. Hall, M.A.: Correlation-based feature selection for discrete and numeric class machine learning. In: Proc. 7th Intl. Conf. Machine Learning, Morgan Kaufmann Publishers, Stanford University (2000)

    Google Scholar 

  12. Kohavi, R., John, G., Long, R., Manley, D., Pfleger, K.: MLC++: A machine learning library in C++, available on, http://www.sgi.com/tech/mlc/docs.html

  13. Oden, C., Ercil, A., Buke, B.: Combining implicit polynomials and geometric features for hand recognition. Pattern Recognition Letters 24, 2145–2152 (2003)

    Article  Google Scholar 

  14. John, G.H., Langley, P.: Estimating continious distribution in Bayesian classifiers. In: Proc. 11th Conf. on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers, San Mateo (1995)

    Google Scholar 

  15. Eyheramendy, S., Lewis, D., Madigan, D.: On the naive Bayes model for text classification. To appear in Artificial Intelligence & Statistics (2003)

    Google Scholar 

  16. McCallum, A., Nigam, K.: A comparison of event model for naive Bayes Text Classification. In: Proc. AAAI 1998 Workshop on Learning for Text Categorization (1998)

    Google Scholar 

  17. Aha, D.W., Kibler, D., Albert, K.: Instance based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  18. Vapnik, V.: Statistical Learning Theory. Wiley & Sons, Inc., New York (1998)

    MATH  Google Scholar 

  19. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The PROP algorithm. In: Proc. Intl. Conf. Neural Networks, vol. 1, pp. 586–591 (1993)

    Google Scholar 

  20. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  21. Landwehr, N., Hall, M., Frank, E.: Logistic Model Trees. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 241–252. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. The Annals of Statistic 38(2), 337–374 (2000)

    Article  MathSciNet  Google Scholar 

  23. Kumar, A., Wong, D.C.M., Shen, H., Jain, A.K.: Personal verification using palmprint and hand geometry biometric. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 668–675. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Kumar, A., Zhang, D.: Integrating shape and texture for hand verification. In: Proc. ICIG 2004, Hong Kong, December 2004, pp. 326–329 (2004)

    Google Scholar 

  25. John, C.: Russ, The Image Processing Handbook, 3rd edn. CRC Press, Boca Eaton (1999)

    Google Scholar 

  26. Cristianini, N., S-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumar, A., Zhang, D. (2005). Biometric Recognition Using Feature Selection and Combination. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_85

Download citation

  • DOI: https://doi.org/10.1007/11527923_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics