Skip to main content

A Flexible Object Model for Recognising and Synthesising Facial Expressions

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 1509 Accesses

Abstract

We here introduce the Flexible Object Model to represent objects with structured deformation, such as the human face under variable expression. The model represents object shape and texture separately and extracts a data parameterisation autonomously from image sequences after initialisation by a single hand-labeled model graph. We apply the model to the representation, recognition and reconstruction of nine different facial expressions. After training, the model is capable of automatically finding facial landmarks, extracting deformation parameters and reconstructing faces in any of the learned expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wiskott, L., Fellous, J.M., Krüger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19, 775–779 (1997)

    Article  Google Scholar 

  2. Okada, K.: Analysis, Synthesis and Recognition of Human Faces with Pose Variations. PhD thesis, University of Southern California (2001)

    Google Scholar 

  3. Hong, H.: Analysis, Recognition and Synthesis of Facial Gestures. PhD thesis, University of Southern California (2000)

    Google Scholar 

  4. Matthews, I., Baker, S.: Active appearance models revisited. International Journal of Computer Vision 60, 135–164 (2004)

    Article  Google Scholar 

  5. Maurer, T., von der Malsburg, C.: Tracking and learning graphs and pose on image sequences of faces. In: Proceedings of the 2nd INternational Conference on Automatic Face and Gesture Recognition (FG 1996), p. 76. IEEE Computer Society, Los Alamitos (1996)

    Google Scholar 

  6. Bartlett, M.S.: Face Image Analysis by Unsupervised Learning. Kluwer Academic Publishers, Dordrecht (2001)

    MATH  Google Scholar 

  7. Fritzke, B.: A growing neural gas network learnes topologies. In: Advances in Neural Information Processing Systems, vol. 7, pp. 625–632. MIT Press, Cambridge (1995)

    Google Scholar 

  8. Kegl, B., Krzyzak, A., Linder, T., Zeger, K.: Learning and design of principal curves. IEEE Trans. Pattern Anal. Mach. Intell. 22, 281–297 (2000)

    Article  Google Scholar 

  9. Campbell, S.L., Meyer, J.C.D.: Generalized Inverses of Linear Transformations. Dover Publications, New York (1991)

    MATH  Google Scholar 

  10. Pötzsch, M., Maurer, T., Wiskott, L., von der Malsburg, C.: Reconstruction from graphs labeled with responses of gabor filters. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 845–850. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tewes, A., Würtz, R.P., von der Malsburg, C. (2005). A Flexible Object Model for Recognising and Synthesising Facial Expressions. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_9

Download citation

  • DOI: https://doi.org/10.1007/11527923_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics