Skip to main content

Local Feature Based 3D Face Recognition

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 1645 Accesses

Abstract

This paper presents a 3D face recognition system based on geometrically localized facial features. We propose the feature extraction procedure using the geometrical characteristics of a face. We extract three curvatures, eight invariant facial feature points and their relative features. These features are directly applied to face recognition algorithms which are a depth-based DP (Dynamic Programming) and a feature-based SVM (Support Vector Machine). Experimental results show that face recognition rates based on the depth-based DP and the feature-based SVM are 95% for 20 people and 96% for 100 people, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: A survey. Proc. the IEEE 83, 705–740 (1995)

    Article  Google Scholar 

  2. Zhao, W., Chellappa, R., Rosenfeld, A., Phllips, P.J.: Face recognition: A survey. CVL Tech. Report, Center for Automation Research, University of Maryland at College Park (2000)

    Google Scholar 

  3. Medioni, G., Waupotitsch, R.: Face recognition and modeling in 3D. In: Proc. the IEEE Int’l Workshop on Analysis and Modeling of Faces and Gestures, pp. 232–233 (2003)

    Google Scholar 

  4. Song, H., Yang, U., Sohn, K.: 3D face recognition under pose varying environments. In: Chae, K.-J., Yung, M. (eds.) WISA 2003. LNCS, vol. 2908, pp. 333–347. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Hallian, P.L.: Two-and Three Dimensional patterns of the Face, pp. 202–203. A K Peters LTD., Wellesley

    Google Scholar 

  6. Sakoe, H., Chiba, S.: A dynamic programming approach to continuous speech recognition. In: Proc. the 7th ICA, August 1971, p. 20 (1971)

    Google Scholar 

  7. Sahbi, H., Boujemaa, N.: Robust Face Recognition Using Dynamic Space Warping. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, pp. 121–132. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Guo, G., Li, S.Z., Chan, K.: Face recognition by Support Vector Machines. In: Proc. the Fourth IEEE International Conference, March 2000, pp. 196–201 (2000)

    Google Scholar 

  9. Pontil, M., Verri, A.: Support Vector Machines for 3D object recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 20, 637–646 (1998)

    Article  Google Scholar 

  10. Biometrics Engineering Research Center at Yonsei University: http://berc.yonsei.ac.kr

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, Y., Song, H., Yang, U., Shin, H., Sohn, K. (2005). Local Feature Based 3D Face Recognition. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_95

Download citation

  • DOI: https://doi.org/10.1007/11527923_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics