
The External Network Problem ∗

Jan van den Heuvel † and Matthew Johnson †

CDAM Research Report LSE-CDAM-2004-15

December 2004

Abstract

The connectivity of a communications network can often be enhanced if the nodes are
able, at some expense, to form links using an external network. In this paper, we consider
the problem of how to obtain a prescribed level of connectivity with a minimum number
of nodes connecting to the external network.

Let D = (V, A) be a digraph. A subset X of vertices in V may be chosen, the so-called
external vertices. An internal path is a normal directed path in D; an external path is a
pair of internal paths p1 = v1 · · · vs, p2 = w1 · · ·wt in D such that vs and w1 are external
vertices (the idea is that v1 can contact wt along this path using an external link from vs

to w1). Then D is externally-k-arc-strong if for each pair of vertices u and v in V , there
are k arc-disjoint paths (which may be internal or external) from u to v.

We present polynomial algorithms that, given a digraph D and positive integer k, will
find a set of external vertices X of minimum size subject to the requirement that D must
be externally-k-arc-strong.

We also consider two generalisations of the problem : first we suppose that the number
of arc-disjoint paths required from u to v may differ for each choice of u and v, and secondly
we suppose that each vertex has a cost and that we are required to find a minimum cost
set of external vertices. We show that these two problems are NP-hard.

Finally, we consider the analogue of this problem for vertex-connectivity in undirected
graphs. A graph G with set of external vertices X is externally-k-connected if there are k

vertex-disjoint paths joining each pair of vertices in G. We present polynomial algorithms
for finding a minimum size set of external vertices subject to the requirement that G must
be externally-k-connected for the cases k ∈ {1, 2, 3}.

1 Introduction

Communications networks have an obvious modelling in terms of graphs or digraphs, and
often it is possible to express a network’s reliability, or endurance, using some graph-theoretic
property of the (di-)graph that represents it. In this note we consider the following situation :
suppose that the nodes of a network N can access an external network. For example, N could
be a fairly loose network whose nodes can also communicate using a second, more reliable,
network. Another example is a wireless network where additional links can be formed using
satellite connections. Suppose further that by using the external network the reliability of N

can be improved, but that its use should be minimised as there is an associated cost (this
could simply be a financial cost, or it could be a loss of security, or a restriction of node
mobility).

∗ Research supported by EPSRC MathFIT grant no. GR/R83514/01.
† Centre for Discrete and Applicable Mathematics, Department of Mathematics, London School of Eco-

nomics, Houghton Street, London WC2A 2AE, U.K.; email : {jan, matthew}@maths.lse.ac.uk.

1

The problem we have is this :

• if we require N to have a prescribed level of reliability, which nodes should use the
external network ?

This is the most general statement of the External Network Problem.
In this paper we are concerned with the problem when the reliability of the network N is

given by the edge-connectivity of a graph or the arc-strong connectivity of a digraph, or the
vertex-connectivity of a graph. All graphs may have multiple edges.

Let us give some definitions that will allow us to formally state the problem where we
consider the arc-strong connectivity of a digraph D = (V, A); the most interesting version
for which we can provide general answers. An internal path in D is a sequence of vertices
and arcs v1e1v2 · · · et−1vt where, for 1 ≤ i ≤ t − 1, ei is the arc vivi+1. The set of external
vertices is a subset of V and is denoted XV . An external path of D is a pair of internal paths
p1 = v1 · · · vs, p2 = w1 · · ·wt where vs and w1 are external vertices. Thus, in this paper,
when we use the term path without specifying whether it is internal or external, it can be
either. The digraph D is externally-k-arc-strong, and XV is k-good, if between each pair
of vertices in V , there are k arc-disjoint paths. A digraph is internally-k-arc-strong if each
pair of vertices is joined by k-arc-disjoint internal paths (this is just the usual definition of
k-arc-strong).

External Network Problem

Input : A digraph D = (V, A) and a positive integer k.
Output : A k-good set of external vertices XV ⊆ V of minimum size.

In Section 5 we shall present polynomial algorithms that will find a k-good set XV of minimum
size. In the next section we consider the special case of undirected graphs. In Sections 3 and 4
we introduce some preliminary results needed before we can present the algorithms.

First we discuss an alternative setting for this problem. Suppose D is a digraph which is
not k-arc-strong. The (symmetric) Source Location Problem requires us to find a smallest
possible set S (a subset of V that we call a set of sources) such that for each v ∈ V \S there
are k arc-disjoint internal paths from S to v and k arc-disjoint paths from v to S. We show
that a k-good set of external vertices is also a set of sources and vice versa. Let XV be a
k-good set of external vertices for D, and choose a vertex v ∈ XV . For each u ∈ V \ XV ,
there are k arc-disjoint paths from u to v. If any of the paths are external, then consider
only the first internal path that joins u to an external vertex : this provides k arc-disjoint
internal paths from u to XV . To obtain k arc-disjoint internal paths from XV to u, take
the k arc-disjoint paths from v to u and, for those that are external, consider only the second
internal path that joins an external vertex to u. Thus XV is a set of sources. Now suppose
that S is a set of sources. Identify the vertices of S to form a new digraph D′. Clearly D′ is
internally-k-arc-strong. Thus each pair of vertices are joined by k arc-disjoint internal paths,
and, if we let the vertices of S be external vertices, these correspond to arc-disjoint paths in D.
So S is a k-good set of external vertices. Ito et al. [4] described a polynomial algorithm for
the Source Location Problem in the case where k is fixed; the algorithms we present (which
would also provide solutions to the Source Location Problem) are polynomial even if k is not
fixed.

2

If the principal cause of unreliability in a network is node failure, then network reliability
can be modelled using vertex-connectivity. We cannot expect that, in general, the Source
Location Problem (which has been extensively studied) will provide solutions to the External
Network Problem : the Source Location Problem with vertex-connectivity requirements (see
[3, 5]) is not equivalent to the natural formulation of the External Network Problem with
vertex-connectivity requirements. This is discussed further in Section 8.

It is also possible to generalise the External Network Problem with arc-connectivity re-
quirements for digraphs : let c : V (D) −→ R be a cost function and let d : V (D)×V (D) −→ R
be a demand function. Now a set of external vertices is good if for each pair of vertices u, v ∈ V

there are d(u, v) arc-disjoint (internal or external) paths from u to v, and the problem is to
find a minimum cost set of good external vertices. In Section 7, we show that this generali-
sation is NP-hard if either the cost or demand function is non-uniform.

2 Undirected Graphs

In this section G = (V,E) is an undirected graph and k is a positive integer. The following
definitions are the obvious analogues of those for digraphs : a set of external vertices XV is a
subset of V ; an internal path of G is a sequence of incident vertices and edges and an external
path is pair of internal paths where the final vertex of the first and the initial vertex of the
second are external vertices; G is externally-k-edge-connected, and XV is k-good, if each pair
of vertices is joined by k edge-disjoint paths.

We shall describe how to find a minimum size k-good set of external vertices for G. This
could be achieved by replacing each edge of G by a pair of oppositely oriented arcs and using
the algorithms for digraphs presented in the final section. We shall see, however, that the
problem for undirected graphs is far simpler than that for digraphs.

For P ⊆ V , the degree d(P) is the number of edges joining P to V \ P . If P = {v}, we
just write d(v).

Definition 1 A non-empty set P ⊆ V is k-critical if d(P) < k, and, for each proper subset Q

of P , d(Q) ≥ k.

It can easily be seen that XV is a k-good set of external vertices if and only if it intersects
each k-critical set. We say that XV covers any k-critical set that it intersects. Thus our aim
is to cover all the k-critical sets of G with as few vertices as possible. We need the following
lemma, which is well-known and easily proved.

Lemma 1 Let P and Q be subsets of V . Then d(P) + d(Q) ≥ d(P \Q) + d(Q \ P).

Proposition 2 The k-critical sets of G are pairwise disjoint.

Proof : Let P and Q be distinct k-critical sets of G. By the definition of k-critical, one cannot
be a subset of the other. So if P and Q are not disjoint, then P \ Q 6= ∅ and Q \ P 6= ∅.
Using the definition of critical again,

d(P \Q) + d(Q \ P) ≥ 2 k, and

d(P) + d(Q) < 2 k.

3

This contradicts Lemma 1 which proves that the hypothesis that P and Q are not disjoint
must be false. 2

We immediately have the following result.

Theorem 3 A minimum size k-good set of external vertices for a graph G contains as many
vertices as there are k-critical sets in G.

It is not necessary, however, to find the k-critical sets to find a minimum size k-good set of
external vertices. To check that a set XV is k-good, identify the vertices of XV to form a
graph G′ : XV is k-good if and only if G′ is k-edge-connected which can be checked using, for
example, a flow algorithm. To find a minimum k-good set, let XV = V and then repeatedly
remove any vertex from XV as long as the set obtained is k-good. In this way a minimal set
is obtained, and every minimal set is a set of minimum size.

3 Critical Sets in Digraphs

In the sequel, D = (V, A) is a digraph and k is a positive integer.
For P ⊆ V , d−(P) is the number of arcs joining V \ P to P , and d+(P) is the number of

arcs joining P to V \ P .

Definition 2 A non-empty set P ⊆ V is k-critical if d−(P) < k or d+(P) < k, and, for each
proper subset Q of P , d−(Q) ≥ k and d+(Q) ≥ k.

A k-critical set P is k-in-critical if d−(P) < k and k-out-critical if d+(P) < k (it is possible
for a set to be both k-in-critical and k-out-critical).

Again, it can easily be seen that XV is a k-good set of external vertices if and only if it
intersects each k-critical set.

Definition 3 Let P = P1, . . . , Ps be a collection of k-critical sets. The relation graph of
these sets has vertex set P and contains an edge joining Pi and Pj, i 6= j, if Pi ∩ Pj 6= ∅.

We will say that k-critical sets are neighbours if they intersect (even when not explicitly
referring to a relation graph).

We investigate the structure of relation graphs. The results of this section follow easily
from the results of Ito et al. [4] on the Source Location Problem.

Lemma 4 If P is a k-in-critical set in D and Q 6= P is a k-out-critical set in D, then
P ∩Q = ∅.

Proof : By the definition of k-critical neither P nor Q is a subset of the other. If they are
not disjoint, then the three sets of vertices S1 = P \ Q, S2 = P ∩ Q and S3 = Q \ P are
all non-empty. Let S4 = V \ (P ∪ Q) (this is possibly the empty set), and let si,j be the
number of arcs from Si to Sj . As d−(S1) ≥ k and d+(S3) ≥ k (since they are proper subsets
of k-critical sets),

s2,1 + s3,1 + s4,1 ≥ k (1)

s3,1 + s3,2 + s3,4 ≥ k. (2)

4

And as P = S1 ∪ S2 is in-critical and Q = S2 ∪ S3 is out-critical,

s3,1 + s3,2 + s4,1 < k, (3)

s2,1 + s3,1 + s3,4 < k. (4)

Adding (1) to (2), and (3) to (4), we obtain a contradiction. 2

Recall that an undirected graph G is chordal if it contains no induced cycles of length more
than three (that is, if every cycle of length at least four has a chord, an edge joining two
vertices that are not adjacent in the cycle).

Proposition 5 For any digraph, the relation graph G of any collection of its k-critical sets
is a chordal graph and if a collection of k-critical sets Q form a clique in G, then

⋂
P∈Q

P 6= ∅.

Proof : If G is not chordal, there is a cycle induced by some sets P1, . . . , Pt, t ≥ 4. By
Lemma 4, these sets are either all in-critical or all out-critical. Suppose that the latter holds
(it will be clear that the former case can be similarly proved). We can assume that Pi∩Pj 6= ∅
if |i− j| = 1 mod t and Pi ∩ Pj = ∅ otherwise. Then

∑

|i−j|=1 mod t

d+(Pi ∩ Pj) ≤
t∑

i=1

d+(Pi) < t k.

The first sum is obtained by counting the number of arcs from Pi ∩Pj to V \ (Pi ∩Pj). Each
such arc joins Pi to V \ Pi or Pj to V \ Pj (or both) so is also counted at least once when
evaluating the second sum. The second inequality follows from the definition of k-critical.
Thus, as there are t terms in the first sum, d+(Pi ∩ Pj) < k for some i, j, |i− j| = 1 mod t, a
contradiction as Pi ∩ Pj is a proper subset of a k-critical set. This proves that G is chordal.

If Q is a clique of size 1 or 2, then there is a vertex in every set in Q. Let Q = P1, . . . , Pt,

t ≥ 3, be the smallest clique such that
t⋂

i=1
Pi = ∅. Again we can assume that the k-critical

sets are all out-critical. Then

t∑

i=1

d+

(⋂

j 6=i

Pj

)
≤

t∑

i=1

d+(Pi) < t k.

Again, every arc counted when evaluating the first sum is counted at least once for the second
sum (the second inequality is the same as before). Each of the t sets in the first sum is non-
empty (as each intersection is of a collection of sets that forms a clique smaller than Q, so

they have a common vertex), and d+

(⋂
j 6=i

Pj

)
< k for some i, a contradiction as these sets

are proper subsets of k-critical sets. Therefore there must be a vertex contained in every set
in Q, and the proposition is proved. 2

Theorem 6 A minimum size k-good set of external vertices for a digraph D is the same size
as a maximum size family of disjoint k-critical sets.

5

Proof : A k-good set of external vertices must be at least as big as a family of disjoint
k-critical sets since it must intersect each set in the family. We prove the theorem by finding
a k-good set of external vertices XV = {x1, . . . , xt} and a family of disjoint k-critical sets
P1, . . . , Pt such that xi covers Pi, 1 ≤ i ≤ t.

We shall use a well-known property of chordal graphs (see, for example, [1]).

• For any chordal graph G, there exists v ∈ V (G) such that v and its neighbours form a
clique.

Therefore, using this property and Proposition 5,

• for any collection P of k-critical sets, there exists a k-critical set P ∈ P such that the
intersection of P and all its neighbours in P is non-empty; we call P an end-set.

Let G1 be the relation graph of all the k-critical sets of D. Let P1 be an end-set of G1,
and let x1 be a vertex that covers P1 and all its neighbours. Let G2 be the relation graph
of all thek-critical sets not covered by x1 and note that it contains no k-critical set that
intersects P1. Now suppose that we have found x1, . . . , xs and P1, . . . , Ps, s < t, and that the
relation graph Gs+1 of k-critical sets not yet covered contains no critical set that intersects Pi,
1 ≤ i ≤ s. Let Ps+1 be an end-set of Gs+1 and let xs+1 be a vertex that covers Ps+1 and all
its neighbours. Note that Gs+2, the relation graph of uncovered k-critical sets, contains no
set that intersects Pi, 1 ≤ i ≤ s + 1. If Gs+2 is the null graph, then s + 1 = t and we are
done. 2

4 External Subsets

We will describe algorithms to find a minimum size k-good set in a digraph in the next section.
The algorithms will use a generalisation of sets of external vertices : a set of external subsets
is a disjoint collection of non-empty sets XV = {X1, . . . , Xt} such that Xi ⊆ V for 1 ≤ i ≤ t.

Definition 4 A set of external subsets is k-good if
t⋃

i=1
Xi is a k-good set of external vertices.

The remaining definitions in this section assume that XV is a k-good set of external subsets.
An external subset X ∈ XV is redundant if XV \ {X} is also k-good. If XV contains no
redundant set, it is minimally k-good.

Definition 5 For u ∈ V and X ∈ XV , if (XV \ {X})∪ {{u}} is also a k-good set of external
subsets, then u is an alternative to X. The unrestricted set of alternatives to X contains
all such u and is denoted A(X). The restricted set of alternatives to X is A(X) ∩X and is
denoted B(X).

In the algorithms, a common operation is to alter XV by replacing one of the subsets X by its
(restricted or unrestricted) set of alternatives X ′. Notice that if X ′ 6= ∅, then (XV \ {X})∪
{X ′} is also k-good.

Definition 6 For X ∈ XV , a k-critical set is an essential set of X if it is covered by X but
not by any other external subset.

6

A vertex is an alternative to X if and only if it covers its essential sets. Thus if X is not
redundant, A(X) is equal to the intersection of the essential sets of X; if X is redundant, it
has no essential sets and A(X) = V .

Definition 7 If a set X ⊆ V is a subset of an k-critical set P , then P is a confining set
of X. If X is equal to the intersection of its confining sets, then it is confined.

If a set X ∈ XV is not redundant, then A(X) is confined by the essential sets of X. If X is
confined, then B(X) is confined by the confining sets of X and the essential sets of X.

Definition 8 XV is stable if for each X ∈ XV , X = A(X). It is consistent if for each
X ∈ XV , X = B(X).

Notice that if XV is stable, then it is also consistent and each X ∈ XV is confined.

Proposition 7 If XV is a minimum size k-good set of external vertices and XV is a stable
set of external subsets, then |XV | ≥ |XV |.
In the next section, we will see that from a stable set, it is possible to find a minimum
size k-good set that contains one vertex from each external subset. This will prove that
|XV | ≤ |XV |. Thus |XV | = |XV |.
Proof : Let XV = {X1, . . . , Xt}. We will prove that |XV | ≥ |XV | by finding a disjoint
collection of k-critical sets P1, . . . , Pt.

As each external subset in XV is its own set of alternatives, it is equal to the intersection
of its essential sets, and each of these essential sets intersects only one source-set.

We use the structure of relation graphs of k-critical sets of D. Consider the relation
graph G1 of the essential sets of all of the sets X1, . . . , Xt. Let P1 be an end-set of this graph,
and, we might as well assume, that P1 is an essential set for X1. Thus X1 = A(X1) ⊆ P1,
and the essential sets of X1 are P1 and none, some or all of its neighbours. Recall from
Proposition 5 that the intersection of P1 with all its neighbours is non-empty. Each vertex in
this intersection is certainly an alternative to X1 — it covers all the essential sets — and thus
a member of X1. Therefore, as the essential sets each intersect only one of the source-sets,
P1 and all of its neighbours in G1 are essential sets of X1.

Now consider the relation graph G2 of the essential sets except those of X1. Let P2 be an
end-set and suppose it is an essential set for X2. Note that P2 does not intersect P1 as no
essential set that intersects P1 is included in G2. By the same argument as before, P2 and all
of its neighbours in G2 are essential sets of X2.

Then we look for an end-set in the relation graph of all essential sets except those of X1

and X2. From this and further repetitions we find P3, . . . , Pt. 2

When we present the algorithms in the next section, it will be assumed that it is possible to
check that a set of external vertices XV is k-good in polynomial time. This can be done by
contracting the vertices of XV to obtain a digraph D′ and checking that D′ is k-arc-strong
using, for example, a flow algorithm. Furthermore, we can check that XV is a minimally
k-good by checking that XV \ {X} is not k-good for each X ∈ XV . To find the set of
alternatives to some X ∈ XV , first check whether or not XV \ {X} is k-good : if it is, then
A(X) = V ; otherwise A(X) contains each vertex u ∈ V such that (XV \ {X}) ∪ {{u}} is
k-good.

7

5 Algorithms for Digraphs

We present two polynomial algorithms : StableSubsets finds a stable set of external subsets
for a digraph D, and MinimumSet takes a stable set and finds a set of external vertices
containing a single vertex from each external subset. By Proposition 7, this set of external
vertices will have minimum size.

Algorithm StableSubsets

Input : A digraph D = (V, A) where V = {v1, . . . , vn}.
Output : A k-good stable set of external subsets XV for D.

let XV = { {v1}, . . . , {vn} };
while there exists a redundant set R ∈ XV do

let XV = XV \ {R};
end /∗ while ∗/
while there exists Y ∈ XV , Y 6= A(Y) do /∗ L1 ∗/

let XV = (XV \ {Y }) ∪ {A(Y)};
while there exists a redundant set R ∈ XV then /∗ L2 ∗/

let XV = XV \ {R};
while there exists Z ∈ XV , Z 6= B(Z) do /∗ L3 ∗/

let XV = (XV \ {Z}) ∪ {B(Z)}.
end /∗ while ∗/

end /∗ while ∗/
end /∗ while ∗/

Output XV .

Algorithm MinimumSet

Input : A digraph D = (V, A) with a k-good stable set of external subsets XV .
Output : XV , a minimum size k-good set of external vertices for D.

while there exists R′ ∈ XV , |R′| ≥ 2 do /∗ L4 ∗/
choose u ∈ R′;
let XV = (XV \ {R′}) ∪ {{u}};
while there exists Z ∈ XV , Z 6= B(Z) do /∗ L5 ∗/

let XV = (XV \ {Z}) ∪ {B(Z)}.
end /∗ while ∗/

end /∗ while ∗/
let XV =

⋃
X∈XV

X.

Output XV .

Using these algorithms, the time needed to find a minimum size k-good set of external
vertices for a digraph D = (V, A) is O(n4 m log(n2/m) where n = |V | and m = |A|. The
bottleneck is the loop labelled L1 : it can be shown that this loop takes time O(n3 S(n)),
where S(n) is the complexity of an algorithm that decides whether a set of vertices is k-good.

8

As we remarked at the end of the previous section this can be done using a flow algorithm; in
particular an algorithm of Hao and Orlin [2] means we can take O(nm log(n2/m)) for S(n).

In the remainder of this section we prove the efficacy of the two algorithms.
To begin, StableSubsets considers the vertex set of V as a set of external subsets XV .

Redundant sets are discarded until XV is a minimal k-good set of external subsets.
The main part of the algorithm contains three nested while loops labelled L1, L2 and L3.

We say that the algorithm enters a loop if the loop condition is satisfied. For example, the
loop condition for L2 is that XV contains a redundant set. Inside the loops XV is altered
by replacing external subsets by their sets of alternatives or by discarding external subsets.
We shall show that after each alteration XV is still k-good. Thus if the algorithm does not
enter L1, then for each X ∈ XV , X = A(X). Hence XV is a k-good stable set of external
subsets and we have the required output.

We shall prove the following stronger claims. (Recall that a set of external subsets XV is
consistent if X = B(X) for each X ∈ XV .)

Claim 1 (a) Each time the algorithm considers the loop condition for L1, XV is a consistent
k-good set of external subsets, and each X ∈ XV is confined or a singleton, but not redundant.
(b) Each time the algorithm considers the loop condition for L2, XV is a consistent k-good
set of external subsets, and each X ∈ XV is confined or a singleton.

We prove the claim by induction. The first time the algorithm considers the loop condition
for L1, XV is a set of singletons and minimal. Thus each external subset is non-redundant
and its own restricted set of alternatives, and hence XV is consistent.

Suppose that X = B(X) and X is non-redundant for each X ∈ XV and that L1 is entered.
A set Y is replaced by Y ′ = A(Y) (and Y $ Y ′ since Y = B(Y) ⊆ A(Y) 6= Y). Clearly
B(Y ′) = Y ′, Y ′ is confined, and XV is k-good. For each X ∈ XV , X 6= Y ′, X remains
a singleton or confined, and also the set of alternatives to X will, if anything, have grown
when Y was replaced by A(Y). Thus for all X ∈ XV , the claim that X is confined or a
singleton and X = B(X) still holds when the loop condition for L2 is considered. So if L2 is
not entered, none of the external subsets is redundant; the algorithm returns to consider the
condition for L1 and Claim 1 (a) holds.

Suppose that L2 is entered and a redundant set R is removed from XV . If L3 is not
entered, then Claim 1 (b) holds.

So suppose that L3 is entered. We call the process encoded by L3 reduction : to reduce
a k-good set of external subsets is to arbitrarily choose a external subset X and replace it
by B(X), and to repeat this until a k-good consistent set is obtained (note that after each
alteration, the restricted sets of alternatives of each external subset must be recalculated). A
k-good set of external subsets is reducible if this process is possible, that is, if each time we
replace a external subset X by B(X) we obtain a k-good set of external subsets (clearly the
process must eventually terminate as the external subsets are continually getting smaller).

Proposition 8 Let XV be a consistent k-good set of external subsets such that each X ∈ XV

is confined or a singleton. Let Z ∈ XV and let Z ′ = ∅ or Z ′ = {z} for some z ∈ Z. If
(XV \ {Z}) ∪ {Z ′} is a k-good set of external subsets, then it is reducible. Moreover, each X

in the set of external subsets obtained after the reduction is confined or a singleton.

9

The proof is left to the end of the section.
Apply the proposition to the set XV obtained just before R is discarded with Z = R and

Z ′ = ∅. Thus after the algorithm has finished looping through L3, Claim 1 (b) holds. Then an-
other redundant set may be discarded and the algorithm may begin to loop through L3 again.
When no more redundant sets can be found, the algorithm has finished its run through L1
and Claim 1 (a) holds. We have shown that StableSubsets will output a k-good stable set
of external subsets.

MinimumSet contains two nested while loops, L4 and L5. If the algorithm does not
enter L4, then each external subset contains one vertex and from this we obtain a minimum
size k-good set of external vertices.

As before, we must show that as XV is altered, it is always a k-good set of external subsets.

Claim 2 Each time the algorithm considers the loop condition for L4, XV is a k-good con-
sistent set of external subsets, and each X ∈ XV is confined or a singleton.

We use induction to prove the claim. The first time the algorithm considers the loop condition
for L4, XV is stable and the claim holds (see the remark after Definition 8). Assume the
claim holds as L4 is entered. After replacing an external subset R′ by one of its alternatives,
XV is still k-good (by Definition 5). If the algorithm does not enter L5, then the claim is
true. All that remains to be proved is that once the algorithm finishes going through L5,
the resulting XV satisfies the conditions in the claim. Notice that L5 is identical to L3 : so
applying Proposition 8 with Z = R′ and Z ′ = {u} will guarantee that this is the case. We
have shown that MinimumSet will output a minimum size k-good set of external vertices.

We require one further result on chordal graphs before we prove Proposition 8.

Lemma 9 Let u and v be non-adjacent vertices in a chordal graph G, and suppose that W1,
the set of vertices adjacent to both u and v, is non-empty. Let W2 contain each vertex (other
than u and v) that is adjacent to every vertex in W1. Then u and v are in different components
in G− (W1 ∪W2).

Proof : We show that if there is a u-v path in H = G− (W1 ∪W2), then there is an induced
cycle of length greater than 3 in G.

Let up1 · · · prv be the shortest u-v path in H (r ≥ 2 as p1 /∈ W1). As p1 /∈ W2, there
exists w ∈ W1 such that p1 and w are not adjacent in G. If possible, choose the smallest
i ≥ 2 such that pi is adjacent to w in G : then {u, p1, . . . , pi, w} induces a cycle in G. If no pi

is adjacent to w, then {u, p1, . . . , pr, v, w} induces a cycle. 2

Proof of Proposition 8 : Let XV , Z and Z ′ be as in the proposition. During the reduction
of (XV \ {Z}) ∪ {Z ′} we repeatedly select an external subset X to replace with its restricted
set of alternatives B(X). A singleton will never be selected as it is equal to its restricted set of
alternatives. If X is confined, then B(X) is also confined, and if B(X) 6= ∅, then replacing X

by B(X) will give a new set of external subsets. Hence the proposition holds if B(X) 6= ∅
for all external subsets X encountered during reduction. Thus we will assume that we find
a external subset with an empty restricted set of alternatives and show that this leads to a
contradiction.

10

First some terminology : if a set X ′ is obtained from X by any number of replacements,
then we say that X is an ancestor of X ′ and X ′ is a descendant of X (a set is its own ancestor
and descendant).

Every external subset obtained during reduction is a subset of an external subset of XV .
Thus if X and X∗ are unrelated confined external subsets (neither is the ancestor of the
other), then they are disjoint and there is a confining set of X that does not intersect all the
confining sets of X∗ (since if the relation graph of the confining sets of X and X∗ were a
clique, there would, by Proposition 5, be a vertex contained in all of them, hence in X ∩X∗).
So there is a confining set of X that does not intersect X∗.

Now we assume that X is the first external subset obtained during reduction with B(X) =
∅, and find a contradiction. We can assume that |X| ≥ 2 and X is confined. Thus B(X) is
equal to the intersection of the confining sets of X and the essential sets of X. As B(X) = ∅,
by Proposition 5, two of these sets, say V1 and V2, are disjoint (and V1 and V2 must be
essential sets of X, as X is a subset of each of its confining sets). Let G be the relation graph
of all the in-critical sets of D. Apply Lemma 9 with u = V1 and v = V2 (W1 is non-empty as
it includes all the confining sets of X) : we obtain a graph H = G− (W1 ∪W2) such that V1

and V2 are in separate components of H, say H1 and H2.
We shall find a path in H from H1 to H2, a contradiction. We need the following result.

Assertion 10 Suppose that an external subset Y is replaced by B(Y) during reduction and
that P is an essential but not confining set of Y . Then either
• P ∩ Z 6= ∅, or
• there is an external subset T that was replaced by B(T) earlier during reduction (i.e.,

before Y is replaced by B(Y)), and P ∩ T 6= ∅ but P ∩B(T) = ∅.

Proof : Let Y ′ be the ancestor of Y in XV . As P is not a confining set of Y , it is not a
confining set of Y ′. Thus P was covered by another external subset in XV (else Y ′ 6= B(Y ′),
contradicting that XV is consistent). If this was Z, then P ∩ Z 6= ∅. Otherwise suppose an
external subset W covered P . When Y is replaced by B(Y), no descendant of W covers P .
Thus at some point before Y was replaced, a descendant of W that does cover P was replaced
by its restricted set of alternatives that does not cover P . Let this descendant be T . 2

We use the assertion to find a sequence X1P1X2 · · ·XrPr where,
• X1 = X and P1 = V1;
• for 1 ≤ j ≤ r, Xj is a confined external subset, Pj is an essential but not confining set

of Xj ;
• for 1 ≤ j ≤ r − 1, Pj is covered by Xj+1 but not by B(Xj+1);
• Pr ∩ Z 6= ∅;
• sets that are not consecutive in the sequence are disjoint.

The first two terms of the sequence are given. When the first 2 j terms, X1P1X2 · · ·XjPj ,
are known, apply Assertion 10 with Y = Xj and P = Pj . If Pj ∩ Z 6= ∅, then the sequence
is found. Otherwise let Xj+1 = T . Since X was the first external subset encountered with
an empty restricted set of alternatives, B(Xj+1) 6= ∅ and is confined. As B(Xj+1) does not
cover Pj , Xj+1 must have an essential set that does not cover Pj : let this set be Pj+1. Note
that Pj+1 is not a superset of Xj and thus not a confining set of it. We must show that Xj+1

11

and Pj+1 are each disjoint from the sets they are not consecutive o in the sequence. By the
choice of Pj+1 and Xj+1, Pj ∩ Pj+1 = ∅; and Xj+1 is unrelated to Xj so they are disjoint.
Let Qj and Qj+1 be disjoint confining sets of Xj and Xj+1, respectively. Then Pj+1∩Xj = ∅,
else {Qj , Pj , Qj+1, Pj} induces a 4-cycle in G. If j > 1, we must show that, for 1 ≤ j′ ≤ j−1,
Xj+1 and Pj+1 do not intersect Xj′ or Pj′ . Apply Lemma 9 with u = Pj and v = Pj−1 (W1 is
not empty as it includes all the confining sets of Xj) : we obtain a graph J = G− (W1 ∪W2)
such that Pj and Pj−1 are in separate components of J , say J1 and J2. As Qj+1 covers Pj and
does not intersect Xj , it must be in J1. For 1 ≤ j′ ≤ j − 1, let Qj′ be a confining set of Xj′

that does not intersect Xj . Note that Pj−1Qj−1Pj−2 · · ·P1Q1 is a path in G and must be
in J2 since none of these in-critical sets intersect Xj . Thus, for 1 ≤ j′ ≤ j− 1, Pj+1 and Qj+1

(and so Xj+1) are disjoint from Pj′ and Qj′ .
Every time in the construction above we find a set Xj that is replaced by its restricted set

of alternatives B(Xj) during reduction earlier than Xj−1 was replaced by B(Xj−1). Therefore
after a finite number of steps the sequence must end with a suitable Pr.

Once the sequence is found, let Q′
j , 2 ≤ j ≤ r, be a confining set of Xj that does not

intersect X = X1. Then P1Q
′
2P2 · · ·Q′

rPr must be a path in H1. Thus we have found an
in-critical set Pr in H1 that intersects Z.

Use the same argument to find an in-critical set W in H2 that intersects Z (find a path
from V2). If |Z| ≥ 2, then there is a confining set U of Z that does not intersect every confining
set of X. Thus Pr−1UW is a path in H from H1 to H2. If |Z| = 1, then Pr−1∩W ⊇ Z. Hence
Pr−1W is an edge in H. This final contradiction completes the proof of Proposition 8. 2

6 Running Time of the Algorithms

The algorithms StableSubsets and MinimumSet contain three consecutive steps that must
be taken to obtain a minimum size transversal.
1. Find a minimal set of external subsets.
2. Find a stable set of external subsets (L1).
3. Find a minimum size set of k-good external vertices (L4).

We will show that Step 2 is the bottleneck and determine the overall running time.
Let S(n) be the complexity of an algorithm that checks whether or not a set is k-good.
The complexity of Step 1 is O(nS(n)) : for each of the n external subsets {vi} ∈ T , we

check whether T \ {{vi}} is a set of external subsets.
Note that each while loop in one of the algorithms has two consecutive steps : checking

the loop condition and, possibly, performing the loop content. To find the complexity of a
loop, it is necessary to find the complexity of each step and how many times the algorithm
may cycle through the loop. It takes time O(nS(n)) to check the loop condition of L3 :
for each Z ∈ T and each vertex v ∈ Z, we must see if v is an alternative to Z, that is, if
(T \ {Z})∪{{v}} is a set of external subsets. The content of L3 takes constant time, and the
algorithm may pass through L3 at most n times within each run through L2 (as during each
pass through L3 at least one vertex is removed from the sets of external subsets). Thus L3
has complexity O(n2 S(n)). It takes time O(nS(n)) to check the loop condition of L2 : we
check whether T \ {X} is a set of external subsets for each X ∈ T . The content of L2 is the
loop L3 and, within each run through L1, the number of times the algorithm may consider

12

the loop conditions for L2 and L3 is, in total, n (since both loops have an operation that
removes vertices). Thus L2 has complexity O(n2 S(n)). The loop condition of L1 is checked
in time O(n2 S(n)) : for each vertex v and each external subset Y ∈ T , we must see if v is an
alternative to Y , that is, if (T \{Y })∪{{v}} is a set of external subsets. The content of L1 is
loop L2, and the algorithm may enter L1 at most n times (as the number of external subsets
is reduced each time). Thus the complexity of L1 is O(n3 S(n)).

The loop condition for L4 has complexity O(n), while the content takes constant time; the
loop condition for L5 has complexity O(nS(n)), with the content again taking constant time.
Loops L4 and L5 together are checked at most n times. So the third step has complexity
O(n2 S(n)).

Thus the running time of the algorithms is O(n3 S(n)).

7 Non-uniform Cost and Demand Functions

In this section, we consider a generalised External Network Problem for arc-connectivity in
digraphs. Let c : V −→ R be a cost function and let d : V × V −→ N be a demand function.
A set of external vertices is good if for each pair of vertices u, v ∈ V there are d(u, v) arc-
disjoint (internal or external) paths from u to v. The cost of a set of vertices is the sum of
its members’ costs. The generalised External Network Problem is to find a minimum cost set
of good external vertices.

Theorem 11 The problem of finding a minimum cost good set of vertices for a digraph is
NP-hard if either the cost function or the demand function is non-uniform

It is helpful to consider the analogous generalisation of the Source Location Problem. Let
c′ : V −→ R be a cost function and let d+ : V −→ N and d− : V −→ N be demand functions.
The generalised Source Location Problem is to find a minimum cost set of sources such that,
for each v ∈ V , there are d+(v) arc-disjoint paths from v to the set of sources and d−(v) arc-
disjoint paths from the set of sources to v. In [4, Corollary 1], it is shown that the generalised
Source Location Problem for arc-connectivity in digraphs is NP-hard if the cost function or
either of the demand functions is non-uniform. We can use this result directly to prove one
case of Theorem 11.

Proof of Theorem 11 : The Source Location Problem with uniform demands k is equivalent
to the External Network Problem with uniform demand k (we argued this in Section 1; the
possibility that costs are not uniform does not make any difference). Thus a solution to
the Source Location Problem with non-uniform costs can be obtained from a solution to the
External Network Problem with non-uniform costs. As the former is NP-hard [4, Corollary 1]
so is the latter.

Now suppose that the cost function is uniform. Let H = (U,E) be a hypergraph where
the hyperedges are not mutually disjoint. Let D = (V, A) be a digraph with V = U ∪E ∪{x}
and A = { (u, e) | u ∈ e ∈ E } ∪ { (e, x) | e ∈ E }. Let d be the demand function for D where
d(ei, ej) = 1 for all ei, ej ∈ E, i 6= j, and all other demands are 0. Note that the union of
a transversal of H and {x} is a good set for D. We will show that such a set has minimum
size. Thus we will have shown that the NP-hard problem of finding the size of a minimum

13

transversal of a hypergraph can be reduced to the problem of finding a minimum size good
set of external vertices for a digraph with a non-uniform demand function (except, possibly,
if the hyperedges are disjoint, but, in this case, finding a minimum transversal is trivial).

Let XV be a minimum size good set for D. The demand function requires only that there
are paths in both directions between each pair in E. As there are no internal paths joining
these vertices, XV is a good set if and only if, for each e ∈ E, there is an internal path
from XV to e and an internal path from e to XV (possibly e ∈ XV and the paths both have
length zero). For each vertex v ∈ XV , if there is an internal path from v to e, then v is an
in-cover for e; if there is an internal path from e to v, then v is an out-cover for e. So XV is
good if and only if it contains an in-cover and an out-cover for each e ∈ E. In this proof, we
will claim twice that XV can be modified by removing and adding different vertices and that
it remains good. The veracity of these claims can be established by checking that whenever
we remove a vertex v from XV , all the vertices of E for which v is an in-cover or an out-cover
remain covered by some other vertex in XV .

For each e ∈ E, the only arc from e joins it to x and there are no arcs leaving x. Thus
either e or x must be in XV to provide an out-cover for e. If x is not in XV , then E ⊆ XV . In
this case, it is possible to find a good set of equal size that does contain x : there are at least two
hyperedges e1 and e2 with non-empty intersection containing, say, u, so XV \ {e1, e2}∪{u, x}
is also good.

We now assume that x ∈ XV . If e ∈ XV , then we can choose a vertex u ∈ e and
XV \ {e} ∪ {u} is also good so we can further assume XV ∩ E = ∅. Thus XV must contain
at least one vertex u ∈ e for each e ∈ E (to provide an in-cover for e). That is, XV must
contain a transversal of H. So the union of a transversal of H and {x} is a minimum size
good set. 2

8 Vertex-connectivity Requirements

In this section, we consider only undirected graphs. The corresponding problems for directed
graphs have not been studied.

As in Section 2, for a graph G = (V,E), the set of external vertices is a subset of V

denoted XV . A set of external vertices is k-vertex-good and G is externally-k-connected if
each pair of vertices is joined by k vertex-disjoint (internal or external) paths.

Notice that this definition implies that a k-vertex-good set of external vertices for a graph
is a set of vertices such that each pair of vertices in the graph remains connected (using
external paths if necessary) when fewer than k vertices are removed from the graph. Consider
an alternative definition : a set of external vertices XV is k-vertex-good if each pair of vertices
remains connected (possibly only by external paths) when fewer than k vertices not in XV

are removed from the graph. That is, we suppose that a vertex chosen as an external vertex
not only gains the ability to communicate with other external vertices but also becomes
indestructible. When the Source Location Problem with vertex-connectivity requirements
was studied (see, for example, [3]), definitions analogous to this alternative definition were
used and the problem of finding smallest possible sets of sources was shown to be NP-hard if
the required external connectivity is more than 2. We believe our original definition is more
natural and we conjecture that there exist polynomial algorithms to find a k-vertex-good set

14

of external vertices for any k. In this section we show that the algorithms exist for k ≤ 3.

Theorem 12 There exist polynomial algorithms to find minimum size k-vertex-good sets for
k ≤ 3.

Proof : We shall not give explicit algorithms. In each case, we will show that if a graph is
decomposed in a certain way, then it can be seen that a set is k-vertex-good if and only if
it intersects particular components of this decomposition. Polynomial algorithms for finding
these decompositions are well-known (see, for example, [1] if necessary). Bear in mind that
if a graph is k-connected, then the empty set is a k-vertex-good set.

Case 1 : k = 1.
If G is not connected, then clearly a set is 1-vertex-good if and only if it contains a vertex
from each connected component, and a minimum size set contains precisely one vertex from
each component.

Case 2 : k = 2.
Recall that a block of a graph G is either a maximally 2-connected subgraph or a bridge and
that a vertex that belongs to more than one block is a cutvertex. Let B(G) be the graph
that has the blocks and cutvertices of G as its vertices with edges joining each cutvertex to
the blocks that contain it. Recall that B(G) is a forest. Suppose that G is not 2-connected
(and contains more than 2 vertices) and so contains more than one block. A block β is an
end-block if it has degree 1 in B(G); that is, it contains only one cutvertex. This cutvertex
is contained in every internal path joining vertices in β to other parts of the graph. So if a
set is 2-vertex-good it is necessary for it to contain one vertex from each end-block and also,
obviously, two vertices from each block that has degree 0 in B(G). It is easy to check that
this is also sufficient.

Case 3 : k = 3.
We require a characterisation of 2-connected graphs due to Tutte [6]. We need some further
definitions. A bond is a pair of vertices joined by 3 or more parallel edges. A cleavage unit
is a graph that is either 3-connected, a cycle or a bond. If edges are added to a graph G,
the augmented graph obtained is called Ga, and the edges of G are called real, the additional
edges are virtual.

For any 2-connected graph G, there is an augmented graph Ga such that a collection of
cleavage units can be obtained where
• each real edge is in exactly one cleavage unit, and
• each virtual edge is in exactly two cleavage units.

Furthermore, if Ga is obtained using as few virtual edges as possible, then the graph that
has the cleavage units as vertices and whose edge set is the set of virtual edges — each virtual
edge joins the pair of cleavage units that contain it — is a tree. It is called the cleavage unit
tree of G and is denoted T (G). Tutte [6] showed that for any 2-connected graph G, T (G) is
unique and no edge of T (G) joins two cycles or two bonds. Any pair of vertices joined by a
virtual edge is a hinge. Vertices in a hinge belong to more than one cleavage unit and other
vertices belong to only one. If cleavage units are separated in T (G) by the removal of a virtual
edge, then they are separated in G by the removal of the corresponding hinge. If more than

15

two cleavages units contain the same hinge, then exactly one of them is a bond, and in T (G)
the bond is adjacent to all the other units that share the hinge. Thus in a cleavage unit that
is not a bond there are no parallel virtual edges.

We shall need a technical result, Lemma 13, which requires some further definitions. Let
p, q, r and s be (not necessarily distinct) vertices in a 2-connected graph G. We call a set of
paths with specified ends vertex-disjoint if they intersect only, if at all, at their ends. A set of
3 vertex-disjoint paths in Ga that join each of p, q and r to s is called a pqrs-pathset. Let Π
be a pqrs-pathset. When we say that a vertex or edge is in Π, we mean that it is in one of
the three paths. Each virtual edge e = uv in Π belongs to 2 cleavage units. We will call one
of these used and the other unused. If exactly one of these two units contains real edges of Π,
then it is the used unit. Otherwise we can choose which is used and which unused. Let S(Π)
be a set of cleavage units that includes each cleavage unit that contains a real edge of Π and
the used cleavage unit of each virtual edge. Let S∗(Π) be the smallest set of cleavage units
that contains S(Π) and that induces a connected component of T (G). (To see that S(Π)
might not be connected in T (G) even though Π is connected in G, suppose that e = uv ∈ U

and e′ = vw ∈ U ′ are adjacent edges in a path in Π, and that {v, x} is a hinge shared by U

and U ′, x /∈ {u,w}. Then U and U ′ will not be adjacent in T (G) if there is a bond containing
{v, x}.)

If S∗(Π) does not contain any unused cleavage unit of a virtual edge in Π, then Π is
realisable. Note that if Π is realisable, then for each virtual edge e in Π, in T (G), e joins
its unused cleavage unit to S∗(Π), and so no two virtual edges in Π have the same unused
cleavage unit (as this would allow us to find a cycle in T (G)).

Lemma 13 Let Π be a realisable pqrs-pathset for a 2-connected graph G.
(1) Then there is a pqrs-pathset Π∗ for G that contains no virtual edges.
(2) Moreover, if Π does not contain a virtual edge e∗ that has one end incident with S∗(Π)
in T (G), then Π∗ contains no edges from cleavage units separated from S∗(Π) in T (G) by e∗.

Proof : To prove (1), we will first show that we can replace a virtual edge of Π to obtain
another realisable pqrs-pathset. Then we will show that if we continue to replace virtual
edges in this way, we will eventually obtain a pqrs-pathset containing no virtual edges.

Suppose that a path π ∈ Π contains a virtual edge e = uv. Let U be the unused cleavage
unit of e. Find a path ρ from u to v in U other than e; by definition a cleavage unit is
2-connected or a bond so this path can be found (possibly it is simply an edge parallel to e).
Substitute ρ for e in π to obtain a new pathset Π′. Note that as e separates U from S∗(Π)
in T (G), no cleavage unit in S∗(Π) contains a vertex of U \ {u, v}. Therefore the paths of Π′

are also vertex-disjoint and Π′ is a pqrs-pathset. Also, as each unused cleavage unit U ′ of a
virtual edge e′ 6= e in ρ is adjacent to U in T (G), Π′ is realisable.

Note that each time we obtain a new realisable pqrs-pathset Π′ in this way, the set S∗(Π′)
contains one more cleavage unit than S∗(Π). As, for each virtual edge in the pathset, there
is a cleavage unit not in S∗(Π′), we must eventually obtain a pathset containing no virtual
edges.

To prove (2) note that each new edge we add to the pathsets belongs only to cleavage
units not in S∗(Π) so we will never add e∗. Thus no cleavage unit separated from S∗(Π) by e∗

16

can ever become an unused cleavage unit and so we will never add edges from these cleavage
units. This completes the proof of Lemma 13. 2

Now we show how to find a 3-vertex-good set for a graph. We divide the problem into two
cases according to whether or not the graph is 2-connected.

Case 3a : k = 3 and G is 2-connected.
A cleavage unit of G that has degree 1 in T (G) and is not a bond is called an end-unit of G.
The vertices of an end-unit not in its unique hinge can be disconnected from the rest of the
graph by removing the two vertices of the hinge. Thus a 3-vertex-good set for G must contain
a vertex from each end-unit. In fact, we claim that a set XV is a minimum size 3-vertex-good
set for G if and only if it contains each vertex with fewer than 3 neighbours in G and one
vertex that is not in the hinge from every end-unit of G. We have already said enough to
establish that it is necessary that XV contain such vertices. To show that it is sufficient, we
prove that there are 3 vertex-disjoint paths (possibly external) between each pair of distinct
vertices x and y.

Suppose that there is a cleavage unit U that contains both x and y. If U is 3-connected
or a bond, then there is a set Π of 3 vertex-disjoint paths in U that join x and y. Let U

be the used cleavage unit of each virtual edge in Π. Then Π is a realisable xxxy-pathset
(S∗(Π) = U) and, by Lemma 13, there are 3 internal vertex-disjoint paths that join x and y.

Suppose U is a cycle. If neither x nor y is in a hinge, then they must have degree 2 in G

and therefore are both external vertices. If x and y belong to the same hinge in U , then there
is another cleavage unit containing x and y and it is either 3-connected or a bond; the case
dealt with above.

In all remaining cases we can assume there is a cleavage unit U that contains x but not y.
Let e be the virtual edge in T (G) that is incident with U and whose removal separates U

from every cleavage unit that contains y, while {u, v} is the hinge incident with e. Let U ′ be
a cleavage unit that contains y. Let e′ be the virtual edge in T (G) that is incident with U ′

and whose removal separates it from U , while {p, q} is the hinge incident with e′. Finally, let
Cx, Cy and Cπ be the 3 components of T (G) \ {e, e′} where U ∈ Cx and U ′ ∈ Cy. Since G

is 2-connected, there exist two vertex-disjoint paths with distinct ends, say π1 and π2, that
join {u, v} to {p, q}. Note that π1 and π2 contain only edges from cleavage units in Cπ.

To find 3 vertex-disjoint paths that join x and y we will find 3 vertex-disjoint paths in Cx

that join x to each of u, v and an external vertex. Using the same method we can find 3
vertex-disjoint paths in Cy that join y to each of p, q and an external vertex. Pasting all these
paths together we obtain 3 vertex-disjoint paths, one of which is external, that join x and y

in G.
In fact, we will find a uvwx-pathset Π where w ∈ U and either w is an external vertex,

or it is in a hinge of U and incident with a virtual edge e′′ = {w, z}, e′′ 6= e. In the latter
case, let C ′ be the component of Cx \ e′′ that does not contain U . Let U ′′ be an end-unit
in C ′. Then there is a path in G from the external vertex in U ′′ to w that contains only real
edges from cleavage units in C ′. Thus it is sufficient to find vertex-disjoint paths in U from
x to each of u, v and w, with the proviso that w = u only if x = u. If we let U be the used
cleavage unit of every virtual edge in Π, then it is realisable. If we can also show that Π does

17

not contain e or, if w is not an external vertex, e′′, then, applying Lemma 13, we obtain 3
paths in Cx that join x to u, v and an external vertex.

There are three cases according to what type of cleavage unit U is. In each case we find Π
and show that it does not contain e and, when necessary, e′′

Case 3ai : U is 3-connected.
If U is an end-unit, then let w be the external vertex that it contains. If U is not an end-unit,
then let {w, z} be a hinge in U incident with a virtual edge e′′ 6= e, w /∈ {u, v} (such a hinge
exists if U is not an end-unit). Let Π contain 3 vertex-disjoint paths in U from x to each of
u, v and w. If x /∈ {u, v}, then e /∈ Π and if e′′ ∈ Π, then clearly it is the last edge on the
path from x to w; simply switch the labels w and z (clearly z /∈ {u, v} in this case) and use
the same path with e′′ omitted. If x = u, then we require only 2 paths which can be found in
U \ e. Again switch labels if e′′ is in the path that joins x to w.

Case 3aii : U is a bond.
We can assume x = u. If U contains 2 or more virtual edges, then let w = x and let e′′ be
a virtual edge joining u and v distinct from e. Let Π contain two paths of zero length and a
path from u to v that is a single edge other than e and e′′.

If U contains only one virtual edge, then the unique adjacent cleavage unit is a cycle (if
it were 3-connected, e would be redundant). Thus x = u has only 2 neighbours in G and it
is an external vertex. Let w = x and, again, let Π contain two paths of zero length and an
edge from u to v that is not e .

Case 3aiii : U is a cycle.
If x is not a hinge vertex, then x is an external vertex so let x = w. Let Π contain vertex-
disjoint paths in U that join x to each of u, v and w (the latter has zero length) and e /∈ Π
since x /∈ {u, v}.

If x is in a hinge, then let U ′′ be one of the other cleavage units that contains that hinge.
As U ′′ is a bond or 3-connected, let U = U ′′ and we have a case already described whether
or not y ∈ U ′′.

Case 3b : k = 3 and G is not 2-connected.
Let B(G) be the graph of blocks and cutvertices defined in Case 2 above and for each
2-connected block β, let T (β) be the cleavage unit tree of β. To obtain a 3-vertex-good
set of external vertices we include vertices to satisfy the following conditions considered in
order (so later conditions may already be satisfied when they are considered). We must
include
• each vertex with fewer than 3 neighbours in G,
• for each block β, one non-hinge vertex from each end-unit of β unless a non-hinge vertex

of the unit is a cutvertex of G,
• one vertex from each 2-connected block that contains only 2 cutvertices,
• two vertices (that are not cutvertices) from each end-block of G that is 2-connected, and
• if G is not connected, three vertices from each connected component C of G, or, if we

have |V (C)| < 3, every vertex in C.

18

The necessity of each condition is easily seen. Thus to show that a set XV is a minimum
size k-vertex-good set of external vertices if it contains these vertices, we find 3 vertex-disjoint
paths between each pair of distinct vertices x and y.

First suppose that x and y belong to the same block β of G. We know, from the previous
case, that if there are not 3 vertex-disjoint paths between x and y, then we can find a set
of vertex-disjoint paths that contains 2 internal paths from x to y and paths from x to w

and y to z, where w and z are non-hinge vertices in distinct end-units U and U ′ of β. We can
consider U and U ′ to be given, but w and z can be chosen. If U contains an external vertex,
then let that be w. Otherwise let w be the vertex that is a cutvertex of G, and therefore in
another block of G. Clearly there is a path from w to an external vertex in an end-block of G

that does not contain any edges of β. Thus, however w is chosen, we find a path from x to an
external vertex. Choosing z in the same way, we obtain an external path between x and y.

Now suppose that x and y do not belong to the same block. Let β be a block that
contains x but not y. When we refer to a cutvertex of β we shall mean a vertex of β that is
a cutvertex of G. Notice that, by the choice of XV ,
• either x is an external vertex, or
• we can find 3 distinct vertices u, v and w in β such that each is either a cutvertex

(possibly x) or an external vertex.
In the latter case, if x and y are in the same connected component of G, then choose

one of u, v and w to be the cutvertex that separates x and y. If there are vertex-disjoint
paths in β from x to each of u, v and w, then one of these can, possibly, be extended to an
internal path to the block that contains y and the others can be extended, perhaps trivially,
to paths that end in an external vertex, since if, say, u is a cutvertex, we can find a path
from u to an external vertex in an end-block. As the same analysis holds for y, we can find 3
vertex-disjoint paths between x and y.

We must show that if x is not an external vertex, then we can find paths to u, v and w.
Let U be a cleavage unit of β that contains x and is not a bond. Choose 3 vertices p, q and r

in U such that
• either p = u or p is in the hinge that separates x and u, and
• either q = v or q is in the hinge that separates x and v, and
• either r = w or r is in the hinge that separates x and w.

We can alter the choice of u, v or w so that it is not necessary to choose p, q and r all
belonging to the same hinge. Thus we may assume that p, q and r are distinct, except that
we might choose up to two of them to be x. If p, q or r is in a hinge, then let the virtual edge
incident with that hinge be e1, e2 or e3, respectively. If we can find a reliable pqrx-pathset Π
that does not contain e1, e2 or e3, then by Lemma 13, we can find paths in G from x to each
of p, q and r and these can be extended to paths to u, v and w.

To construct the pathset, we consider two cases.

Case 3bi : U is 3-connected.
Clearly we can find vertex-disjoint paths from x to each of p, q and r. If a path contains, say,
e1 = pz, then we can change our choice of p to z to obtain the required pathset.

Case 3bii : U is a cycle.
As x is not an external vertex it must be a cutvertex or in a hinge. If it is a cutvertex, then

19

we let, say, p = x, and the other two paths can be found in U avoiding unwanted virtual
edges as in the previous case.

If x is in a hinge, then let e be the virtual edge incident with the hinge. If there are two
external or cutvertices in the cleavage units of β separated from U by e in T (β), then let them
be u and v. Thus we can let p = q = x and the pathset is easily found. It is not possible for
there to be no external or cutvertices in these cleavage units since amongst them there must
be an end-unit which must contain either an external vertex or a cutvertex. Suppose that
there is exactly one external or cutvertex z in these units. Note that x belongs to another
cleavage unit U ′ that is not a bond (otherwise x is an external or a cutvertex) and such
that x does not belong to the hinge that separates U ′ from z. Choosing U = U ′ we have a
case already described.

This completes the proof of Theorem 12. 2

References

[1] R. Diestel, Graph Theory. Springer-Verlag, New York, 1997.

[2] J. Hao and J. B. Orlin, A faster algorithm for finding the minimum cut in a graph. J. of
Algorithms, 17 (1994), 424–446.

[3] H. Ito, M. Ito, Y. Itatsu, H. Uehara, and M. Yokohama, Location problems based on

node-connectivity and edge-connectivity between nodes and node-subsets. Lecture Notes
in Computer Science, 1969 (2000), 338–349.

[4] H. Ito, K. Makino, K. Arata, S. Honami, Y. Itatsu, and S. Fujishige, Source location

problem with flow requirements in directed networks. Optimization Methods and Soft-
ware, 18 (2003), 427–435.

[5] H. Nagamochi, T. Ishii, and H. Ito, Minimum cost source location problem with vertex-

connectivity requirements in digraphs. Info Process Letters, 80 (2001), 287–294.

[6] W. T. Tutte, Connectivity in Graphs. University of Toronto, Toronto, 1966.

20

