Skip to main content

Traceroute-Like Exploration of Unknown Networks: A Statistical Analysis

  • Conference paper
Combinatorial and Algorithmic Aspects of Networking (CAAN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 3405))

Included in the following conference series:

Abstract

Mapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology has been argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. Here we explore these biases and provide a statistical analysis of their origin. We derive a mean-field analytical approximation for the probability of edge and vertex detection that allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular we show that shortest path routed sampling allows a clear characterization of underlying graphs with scale-free topology. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in different network models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The National Laboratory for Applied Network Research (NLANR), sponsored by the National Science Foundation, http://moat.nlanr.net/

  2. The Cooperative Association for Internet Data Analysis (CAIDA), located at the San Diego Supercomputer Center, http://www.caida.org/home/

  3. Topology project, Electric Engineering and Computer Science Department, University of Michigan, http://topology.eecs.umich.edu/

  4. SCAN project, Information Sciences Institute, http://www.isi.edu/div7/scan/

  5. Internet mapping project at Lucent Bell Labs, http://www.cs.bell-labs.com/who/ches/map/

  6. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the Internet Topology. ACM SIGCOMM 1999, Comput. Commun. Rev. 29, 251–262 (1999)

    Article  Google Scholar 

  7. Govindan, R., Tangmunarunkit, H.: Heuristics for Internet Map Discovery. In: Proc. of IEEE Infocom 2000, vol. 3, pp. 1371–1380 (2000)

    Google Scholar 

  8. Broido, A., Claffy, K.C.: Internet topology: connectivity of IP graphs. In: San Diego Proceedings of SPIE International symposium on Convergence of IT and Communication, Denver, CO (2001)

    Google Scholar 

  9. Caldarelli, G., Marchetti, R., Pietronero, L.: The Fractal Properties of Internet. Europhys. Lett. 52, 386 (2000)

    Article  Google Scholar 

  10. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and Correlation Properties of the Internet. Phys. Rev. Lett. 87, 258701 (2001); Vázquez, A., Pastor-Satorras, R., Vespignani, A.: Large-scale topological and dynamical properties of the Internet. Phys. Rev. E 65, 066130 (2002)

    Article  Google Scholar 

  11. Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker, S.J., Willinger, W.: The Origin of Power Laws in Internet Topologies Revisited. In: Proceedings of IEEE Infocom 2002, New York, USA (2002)

    Google Scholar 

  12. Medina, A., Matta, I.: BRITE: a flexible generator of Internet topologies. Tech. Rep. BU-CS-TR-2000-005, Boston University (2000)

    Google Scholar 

  13. Jin, C., Chen, Q., Jamin, S.: INET: Internet topology generators, Tech. Rep. CSE-TR-433-00, EECS Dept., University of Michigan (2000)

    Google Scholar 

  14. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks: From biological nets to the Internet and WWW. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  15. Baldi, P., Frasconi, P., Smyth, P.: Modeling the Internet and the Web: Probabilistic methods and algorithms. Wiley, Chichester (2003)

    Google Scholar 

  16. Pastor-Satorras, R., Vespignani, A.: Evolution and structure of the Internet: A statistical physics approach. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  17. Burch, H., Cheswick, B.: Mapping the internet. IEEE computer 32(4), 97–98 (1999)

    Google Scholar 

  18. Willinger, W., Govindan, R., Jamin, S., Paxson, V., Shenker, S.: Scaling phenomena in the Internet: Critically examining criticality. Proc. Natl. Acad. Sci. USA 99, 2573–2580 (2002)

    Article  Google Scholar 

  19. Lakhina, A., Byers, J.W., Crovella, M., Xie, P.: Sampling Biases in IP Topology Measurements. Technical Report BUCS-TR-2002-021, Department of Computer Sciences, Boston University (2002)

    Google Scholar 

  20. Clauset, A., Moore, C.: Traceroute sampling makes random graphs appear to have power law degree distributions (2003), arXiv:cond-mat/0312674

    Google Scholar 

  21. Petermann, T., De Los Rios, P.: Exploration of scale-free networks - Do we measure the real exponents? Eur. Phys. J. B 38, 201 (2004)

    Article  Google Scholar 

  22. Freeman, L.C.: A Set of Measures of Centrality Based on Betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  23. Brandes, U.: A Faster Algorithm for Betweenness Centrality. J. Math. Soc. 25(2), 163–177 (2001)

    Article  MATH  Google Scholar 

  24. Goh, K.-I., Kahng, B., Kim, D.: Universal Behavior of Load Distribution in Scale-Free Networks. Phys. Rev. Lett. 87, 278701 (2001)

    Article  Google Scholar 

  25. Erdös, P., Rényi, P.: On random graphs I. Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960)

    MATH  Google Scholar 

  26. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  27. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  28. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Size-dependent degree distribution of a scale-free growing network. Phys. Rev. E 63, 062101 (2001)

    Article  Google Scholar 

  29. Barthélemy, M.: Betweenness Centrality in Large Complex Networks. Eur. Phys. J B 38, 163 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dall’Asta, L., Alvarez-Hamelin, I., Barrat, A., Vázquez, A., Vespignani, A. (2005). Traceroute-Like Exploration of Unknown Networks: A Statistical Analysis. In: López-Ortiz, A., Hamel, A.M. (eds) Combinatorial and Algorithmic Aspects of Networking. CAAN 2004. Lecture Notes in Computer Science, vol 3405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527954_13

Download citation

  • DOI: https://doi.org/10.1007/11527954_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27873-3

  • Online ISBN: 978-3-540-31860-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics