Abstract
Mapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology has been argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. Here we explore these biases and provide a statistical analysis of their origin. We derive a mean-field analytical approximation for the probability of edge and vertex detection that allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular we show that shortest path routed sampling allows a clear characterization of underlying graphs with scale-free topology. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in different network models.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
The National Laboratory for Applied Network Research (NLANR), sponsored by the National Science Foundation, http://moat.nlanr.net/
The Cooperative Association for Internet Data Analysis (CAIDA), located at the San Diego Supercomputer Center, http://www.caida.org/home/
Topology project, Electric Engineering and Computer Science Department, University of Michigan, http://topology.eecs.umich.edu/
SCAN project, Information Sciences Institute, http://www.isi.edu/div7/scan/
Internet mapping project at Lucent Bell Labs, http://www.cs.bell-labs.com/who/ches/map/
Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the Internet Topology. ACM SIGCOMM 1999, Comput. Commun. Rev. 29, 251–262 (1999)
Govindan, R., Tangmunarunkit, H.: Heuristics for Internet Map Discovery. In: Proc. of IEEE Infocom 2000, vol. 3, pp. 1371–1380 (2000)
Broido, A., Claffy, K.C.: Internet topology: connectivity of IP graphs. In: San Diego Proceedings of SPIE International symposium on Convergence of IT and Communication, Denver, CO (2001)
Caldarelli, G., Marchetti, R., Pietronero, L.: The Fractal Properties of Internet. Europhys. Lett. 52, 386 (2000)
Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and Correlation Properties of the Internet. Phys. Rev. Lett. 87, 258701 (2001); Vázquez, A., Pastor-Satorras, R., Vespignani, A.: Large-scale topological and dynamical properties of the Internet. Phys. Rev. E 65, 066130 (2002)
Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker, S.J., Willinger, W.: The Origin of Power Laws in Internet Topologies Revisited. In: Proceedings of IEEE Infocom 2002, New York, USA (2002)
Medina, A., Matta, I.: BRITE: a flexible generator of Internet topologies. Tech. Rep. BU-CS-TR-2000-005, Boston University (2000)
Jin, C., Chen, Q., Jamin, S.: INET: Internet topology generators, Tech. Rep. CSE-TR-433-00, EECS Dept., University of Michigan (2000)
Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks: From biological nets to the Internet and WWW. Oxford University Press, Oxford (2003)
Baldi, P., Frasconi, P., Smyth, P.: Modeling the Internet and the Web: Probabilistic methods and algorithms. Wiley, Chichester (2003)
Pastor-Satorras, R., Vespignani, A.: Evolution and structure of the Internet: A statistical physics approach. Cambridge University Press, Cambridge (2004)
Burch, H., Cheswick, B.: Mapping the internet. IEEE computer 32(4), 97–98 (1999)
Willinger, W., Govindan, R., Jamin, S., Paxson, V., Shenker, S.: Scaling phenomena in the Internet: Critically examining criticality. Proc. Natl. Acad. Sci. USA 99, 2573–2580 (2002)
Lakhina, A., Byers, J.W., Crovella, M., Xie, P.: Sampling Biases in IP Topology Measurements. Technical Report BUCS-TR-2002-021, Department of Computer Sciences, Boston University (2002)
Clauset, A., Moore, C.: Traceroute sampling makes random graphs appear to have power law degree distributions (2003), arXiv:cond-mat/0312674
Petermann, T., De Los Rios, P.: Exploration of scale-free networks - Do we measure the real exponents? Eur. Phys. J. B 38, 201 (2004)
Freeman, L.C.: A Set of Measures of Centrality Based on Betweenness. Sociometry 40, 35–41 (1977)
Brandes, U.: A Faster Algorithm for Betweenness Centrality. J. Math. Soc. 25(2), 163–177 (2001)
Goh, K.-I., Kahng, B., Kim, D.: Universal Behavior of Load Distribution in Scale-Free Networks. Phys. Rev. Lett. 87, 278701 (2001)
Erdös, P., Rényi, P.: On random graphs I. Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960)
Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)
Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)
Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Size-dependent degree distribution of a scale-free growing network. Phys. Rev. E 63, 062101 (2001)
Barthélemy, M.: Betweenness Centrality in Large Complex Networks. Eur. Phys. J B 38, 163 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dall’Asta, L., Alvarez-Hamelin, I., Barrat, A., Vázquez, A., Vespignani, A. (2005). Traceroute-Like Exploration of Unknown Networks: A Statistical Analysis. In: López-Ortiz, A., Hamel, A.M. (eds) Combinatorial and Algorithmic Aspects of Networking. CAAN 2004. Lecture Notes in Computer Science, vol 3405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527954_13
Download citation
DOI: https://doi.org/10.1007/11527954_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27873-3
Online ISBN: 978-3-540-31860-6
eBook Packages: Computer ScienceComputer Science (R0)