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Abstract 
We have previously developed a collaborative virtual environment (CVE) for small-group virtual 

classrooms, intended for distance learning by geographically dispersed students. The CVE employs a peer-

to-peer approach to the frequent real-time updates to the 3D virtual worlds required by avatar movements 

(fellow students in the same room are depicted by avatars).  This paper focuses on our extension to the P2P 

model to support group viewing of lecture videos, called VECTORS, for Video Enhanced Collaboration for 

Team Oriented Remote Synchronization.  VECTORS supports synchronized viewing of lecture videos, so 

the students all see “the same thing at the same time”, and can pause, rewind, etc. in synchrony while 

discussing the lecture material via “chat”.  We are particularly concerned with the needs of the 

technologically disenfranchised, e.g., whose only Web/Internet access if via dialup or other relatively low-

bandwidth networking. Thus VECTORS employs semantically compressed videos with meager bandwidth 

requirements. Further, the videos are displayed as a sequence of JPEGs on the walls of a 3D virtual room, 

requiring fewer local multimedia resources than full motion MPEGs.  

 

1. Introduction 
Learning is essentially a social activity and is of paramount importance in engineering project-

based courses, where a high degree of cooperation is required [11]. The Columbia Hypermedia IMmersion 

Environment (CHIME) system [8] [9], created by the Programming Systems Lab (PSL – 

http://www.psl.cs.columbia.edu) at Columbia University, was designed as a framework for distributed 

software development environments.  CHIME’s users would be software project team members who might 

be geographically dispersed, but could be virtually collocated within the same “room” or adjoining “rooms” 

of a MUD-like 3D virtual world. The layout and contents of this groupspace represent the software project 

artifacts and/or the on-going software process.  This model is similar to the one being developed at MIT 

iLabs [22]. 

CHIME has more recently evolved into a general collaborative and information management 

infrastructure. The artifacts or tasks represented by the system or brought together in “rooms” need not be 

oriented to software development alone. The focus has extended beyond just collaboration to visualization 

of varied data and services through which users can collaborate and that can be represented in the virtual 
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environment. One such example of visualizing varied pieces of data includes viewing segments of videos 

that are pre-taped lectures of classes held here in the Computer Science Department at Columbia 

University. 

Distance learning programs such as the Columbia Video Network and the Stanford Center for 

Professional Development have evolved from mailing (via Fedex and the like) lecture video tapes to their 

off-campus students to streaming the videos over the Internet. The lectures might be delivered “live”, but 

are frequently post-processed and packaged for students to watch (and re-watch) at their convenience. This 

introduces the possibility of forming “study groups" among off-campus students who view the lecture 

videos together, and pause the video for discussion when desired, thus approximating the pedagogically 

valuable discussions of on-campus students. Although the instructor is probably not available for these 

discussions, this may be an advantage, since on-campus students are rarely afforded the opportunity to 

pause, rewind and fast-forward their instructors' lectures. 

However, collaborative video viewing by multiple geographically dispersed users is not yet 

supported by conventional Internet-video technology. It is particularly challenging to support WISIWYS 

(what I see is what you see) when some of the users are relatively disadvantaged with respect to bandwidth 

(e.g., dial-up modems) and local computer resources (e.g., archaic graphics cards, small disks). The 

VECTORS (Video Enhanced Collaboration for Team Oriented Remote Synchronization) plug-in was 

added to CHIME to allow users to synchronize on video based data. This was done by combining 

techniques that extract key frames from a video stream to create a semantically rich version of the video 

[16] and fast peer-to-peer UDP packet based synchronization [10], we allow groups of users to watch 

videos in synchrony, regardless of their bandwidth limitations. 

We have adopted technology (developed by others, Liu and Kender [16]) for “semantically 

compressing" standard MPEG videos into sequences of still JPEG images. This technology automatically 

selects the most semantically meaningful frames to show for each time epoch, and can generate different 

sequences of JPEG images for a range of different compression (bandwidth) levels. This approach works 

very well for typical lecture videos, where it is important, for instance, to see what the instructor has written 

on the blackboard after he/she stands aside, but probably not so important to see the instructor actually 

doing the writing, when his/her hand and body may partially cover the blackboard. The remaining technical 

challenge is synchronizing the downloading and display of the image sequences among each of the 

distributed user clients, including support for shared video player actions such as pause. Further, if student 

groups do indeed sometimes pause the videos, or rewind to a point already available in local buffers 

(caches), it is desirable to take advantage of the then-idle network connection to pre-fetch future images at 

a higher quality level. 

We have developed an approach to achieving this, using a few mechanisms working in tandem. 

First, the video clients communicate with each other over a distributed publish-subscribe event bus, which 

propagates video actions taken by one user in the group to all the other users in the group. Thus any user 

can select a video action, not just a “leader". Secondly, since the clients are viewing the video in a 
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collaborative virtual environment, they synchronize their movements using streams of UDP packets that 

give all virtually-near clients updates of where one is. It is these streams of UDP packets that we piggyback 

our video synchronization anchors. Finally, there is a centralized feedback control loop on the video server 

that dynamically adjusts each video client's choice of both the next image to display and also the next 

image to retrieve from the semantic compression levels available. The controller relies on sensors 

embedded in each client to periodically check what image is currently displaying, whether this image is 

“correct" compared to what other clients are viewing, which images have already been buffered (cached) at 

that client, and what is the actual bandwidth recently perceived at that client. Actuators are also inserted 

into the video clients, to modify local configuration parameters on controller command. The controller 

utilizes detailed information about the image sequences available at the video server, including image start 

and stop times (both the individual images and their start and stop times tend to be different at different 

compression levels), but unlike local client data, video server data is unlikely to change while the video is 

showing. A single controller is used for all clients in the same user group, so it can detect “skew" across 

multiple clients, and may reside on the video server or on another host on the Internet. 

In the next section, we further motivate the collaborative video viewing problem, provide 

background on the semantically compressed video repository, and explain the technical difficulties of 

optimizing quality while synchronizing such semantically compressed videos. The following section 

presents the related work in the field followed by our architecture and dynamic adaptation model, and its 

implementation in VECTORS. We then summarize our contributions. This document serves to explain the 

overall problem, the related work in the field and the system architecture and infrastructure for the 

CHIME/VECTORS system along with providing demo screenshots, and will finally conclude with future 

directions. 

 

2. Motivation 

2.1 Purpose 
The usefulness of this application stems from the fact that students often collaborate when 

studying for exams or preparing for lectures. By providing them with a groupware product that allows them 

to do this in a Same Time / Different Location setting, combined with the unifying synchronization 

functionality, to ensure that they will all be watching the same part of a given video in the same place, and 

the ability to communicate via web chat, etc, we hope to improve student productivity significantly.  

Furthermore, the Server-Side AI involved in breaking down video streams into their most basic, significant 

parts, allows for this unified experience to take place over a group of students with variable network 

connection speeds.   

2.2 Sample Scenario.  
Student A organizes a study group during a Thanksgiving Break. The professor for his course, 

CS1000, has scheduled a midterm exam for the day after school resumes, and has provided online 
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VECTORS Lecture Videos for all lectures to date.  Student A, who remains on campus for their break, 

invites students B, C, and D to join in the study group, and schedules a meeting with them for 5:00 PM on 

November 28th. 

On November 28th, each student connects to the Internet, (Student A via his campus connection, 

Student B and C via DSL at home, and Student D over a 28.8 kbps dial-up connection).  Each student 

opens the CHIME application, which provides them with group chat and VECTORS Video capabilities.  

As they chat, they all agree to open their video player. Since their meeting is scheduled, the video players 

have a list of the group members, and the video player constantly communicates with the other players in 

the group, to ensure that all of them are at the same time in the video.  Student A decides to start the video. 

The clients, after all communicating with one another, begin to play the video simultaneously.  Each 

student hears the same audio of the lecture, though the various client players will be downloading a 

different set of “Key” frames to display on the screen based on their network bandwidth and performance.  

At a point later in the video, student D has a question.  He pauses the video, which in turn, pauses the video 

across the entire list of players, and then asks his question over the CHIME Chat Console. Once the group 

agrees that the question has been dealt with, any one of them presses the Play/Resume button, and all of the 

students’ video players resume the video from the point they left off. 

This process continues for the duration of the video, or until the group declares their study session 

to be complete.  A diagram of the connections is below: 
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Figure 1 - Sample Scenario 

2.2 Abstract Description 
The VECTORS project manifests its purpose in a server-client architecture.  On the server side, 

the software optimizes MPEG (and other continuous video formats) for use over a variety of network 

bandwidths by filtering out “Key Frames” – frames that are deemed to be most significant, and richest in 

content.  These key frames (all of which are a subset of actual frames in the video) are then grouped into 
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smaller subsets, which are referred to as “Compression Levels.”  All compression levels share the same 

lossless audio track, but each video level is a successively smaller set of key frames. Each set corresponds 

to a bandwidth quality level determined by the clients, and a set of key frames, is noted in a text list, and 

directs the player to preload  that specific set of frames, also noting where each frame (in the overall video 

timeline) is to begin and end being displayed.   

The client, the 3D collaborative virtual environment, handles the downloading of an appropriate 

subset of frames, and manages the video timeline, providing playing and pausing capabilities for the end 

user. It is designed to facilitate group viewing of this multimedia in a MUD (Multi User Domain). 

Currently CHIME is the environment where this player resides. Unlike a typical player, the VECTORS 

player downloads a list of frames for all possible compression levels for a given video, and then switches 

between compression levels as it attempts to predict bandwidth performance. In addition to “smart 

downloading” it allows for multiple members in a group to control the group’s multimedia experience by 

playing and pausing the video across all members of the group.  This is accomplished via network 

communication between the various clients. 

 

3. Related Work 
There has been a rich amount of work done in the field of Collaborative Virtual Environments 

(CVE) over the years. The key feature of research in CVE has been the social engineering aspect and the 

attempt to improve the user interface over which users communicate seamlessly with others [11] [23]. 

Basic research in virtual environments has focused on identifying potential indicators of effective 

collaborative learning teams and the types of problems that may result from insufficient group interaction 

and support [24].  

Prasolova-Forland discusses the mechanisms employed to improve social awareness in education 

[11] [12] and has found that the traditional technical tools are not enough, and the mechanisms offered by 

CVEs provide a more promising supplement to the mechanisms in use already. 

Brouras et al. [4][5] describe a fairly robust virtual environment that supports education, however 

their environment needs to be modified by editing the VRML files whenever new materials need to be 

introduced into the system. This would unfortunately make the system extremely hard to operate because 

changes could not be made to the world during run-time, thus potentially disrupting the flow of work. 

Okada et al. [17] tell us about their system that sets up a CVE for the realization of environmental 

education. While this helps users communicate and gain knowledge about nature, and users can set up 

virtual areas at runtime, the setup process of creating the environment is fairly tedious. The user is 

responsible for uploading all the information about the environment s/he wishes to create to the server. 

Oliveira et al. [18] brings the idea of CVE and collaborative learning to Industrial training and e-

Commerce. However, the environment that they describe can only be access from a set of predefined 

camera views. Additionally, while their system can support video on demand, they do not take into account 

that users may wish to view the video as a group but may not have the bandwidth resources to keep up with 
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users that do. 

Finally, the advantage the 3D CVEs, with a MUD like interface, give over traditional web-based 

collaborative environments is the ability for users to see what his/her peers are doing. We have found that it 

is this feature that is critically missing from other approaches. Additionally, most worlds cannot 

dynamically add to the layout of the existing world or even change the look and feel of an existing room to 

suit an individual end-user. It is our goal to look at these key shortcomings as well as address the ones 

overlooked by our peers. 

In addition to the work that has gone into virtual environments that are geared towards educational 

purposes, stream synchronization is a widely studied topic in multimedia research. Classifications of 

synchronization schemes consider whether the scheme is local or distributed (i.e., one or multiple sinks), 

whether they take action reactively or proactively, and whether a global clock is required. Our work does 

not address the problem of inter-media synchronization of multiple modalities (i.e., video and audio), 

where the concern is to ensure the correctly timed playback of related data originating from different 

streams. Our problem is instead related to intra-stream synchronization, which is concerned with ensuring 

the temporal ordering of data packets transmitted across a network from a single streaming source to one or 

more delivery sinks.  

Most intra-stream synchronization schemes are based on data buffering at the sink(s) and on the 

introduction of a delay before the play-out of buffered data packets (i.e., frames). Those synchronization 

schemes can be rigid or adaptive [39]. In rigid schemes, such as [31], the play-out delay is chosen a priori 

in such a way that it accounts for the maximum network transfer delay that can likely occur across the 

sinks. Rigid schemes work under a worst-case scenario assumption and accept the introduction of delays 

that may be longer than necessary, in order to maximize the synchronization guarantees they can o_er even 

in demanding situations. 

Contrary to a rigid approach, adaptive schemes [25] [32] [34] re-compute the delay parameter 

continuously while streaming: they try to “guess” the minimum delay that can be introduced, which still 

ensuring synchronization under actual operating conditions. In order to enhance quality of service in terms 

of minimized play-out delay, those schemes must accept some temporary synchronization inconsistencies 

and/or some data loss, in case the computed delay results are at times insufficient (due, e.g., to variations in 

network conditions) and may need to be corrected on the fly. 

Our approach to synchronization can be classified as a centralized adaptive scheme that employs a 

local clock and operates in a reactive way. The most significant difference compared to other approaches, 

such as the Adaptive Synchronization Protocol [25], the work of Gonzalez et al. [30], or that of Liu et al. 

[28] (which can all be used equally for inter- and intra-stream applications), is that our approach is not 

based on the idea of play-out delay. Instead, we take advantage of layered semantic compression coupled 

with buffering to “buy more time" for clients that might not otherwise be able to remain in sync, by putting 

them on a less demanding level of the compression hierarchy. 

To ensure stream synchronization across a group of clients, it is usually necessary to implement 
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some form of trade-off impacting the quality of service of some of the clients. Many schemes trade off 

synchronization for longer delays, while some other approaches, like the Concord local synchronization 

algorithm [59], allow a choice among other quality parameters besides delay, such as packet loss rate. Our 

approach sacrifices frame rates to achieve synchronization when resources are low. 

Liu et al. provide a comprehensive summary of the mechanisms used in video multicast for quality 

and fairness adaptation as well as network and coding requirements [27]. To frame our work in that 

context, our current design and implementation models a single-rate server adaptation scheme to each of 

the clients because the video quality we provide is tailored specifically to that client's network resources. 

The focus in our work is directed towards the client-side end-user perceived quality and synchrony, so we 

did not utilize the most efficient server model. The authors believe that it would be trivial to substitute in a 

simulcast server adaptation model [34]. Our design also fits into the category of layered adaptation. Such 

an adaptation model defines a base quality level that users must achieve. Once users have acquired that 

level, the algorithm attempts to incrementally acquire more frames to present a higher quality video. In the 

work presented here, the definition of quality translates to a higher frame rate. Liu's discussion of 

bandwidth fairness, coding techniques and network transport perspectives lie out of the scope of this paper. 

With respect to the software architecture, our approach most resembles the Lancaster 

Orchestration Service [34], since it is based on a central controller that coordinates the behavior of remote 

controlled units placed within the clients via appropriate directives (i.e., the VECTORS video buffer and 

manager). The Lancaster approach employs the adaptive delay-based scheme described above; hence the 

playback of video focuses on adapting to the lowest bandwidth client. That approach would degrade the 

playback experience of the other participants to accommodate the lowest bandwidth client. Our approach 

seems preferable, since it enables each client to receive video quality commensurate with its bandwidth 

resources. 

Cen et al. provide a distributed real-time MPEG player that uses a software feedback loop between 

a single server and a single client to adjust frame rates [7]. Their architecture incorporates feedback logic 

within each video player and does not support synchronization across a group of players, while the work 

presented here explicitly supports the synchronization of semantically equivalent video frames across a 

small group of clients. 

With this wealth of related work information, we set out to build a pedagogical system that would 

help non co-located students in bridging the geographical barrier and participate in group based projects 

with video components much like their peers that studied on-campus. 

 

4. Our Solution 
The goal was two-fold – to create a robust and dynamic collaborative virtual environment that would be a 

good enough framework for future plug-ins like video synchronization; and to create a near real-time video 

synchronization plug-in that would allow for students to participate in group based projects despite not 

being co-located. 
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4.1 CHIME 

 
Figure 2 – CHIME environment upon startup – prompt for sources that need to be visualized 

Our solution employs multiple extensible techniques that incorporate the advantages of the 

previous work on collaborative virtual environments. CHIME [8] [9] is a metadata based information 

management and visualization environment, created to serve as a homogenous environment for 

heterogeneous applications and data for internet and intranet-based distributed software development. It has 

further been extended to serve as a framework that aims at managing and organizing information. CHIME 

is designed around an XML-based metadata architecture, in which the software artifacts continue to reside 

in their original locations [8]. 

CHIME is divided up into the centralized server component and the distributed 3D client front-

end. The client takes user input about mapping some existing data source in the 3D world and gives the 

user a representation of the data based on preset visualization defaults. The key insight in CHIME is to not 

map the actual data into the world, instead to use software to extract metadata about the data specified and 

visualize it. Metadata really is nothing more than data about data; a catalog record is metadata; other form 

of description [2]. This saves each client from potentially fruitlessly downloading large amounts data in 

order to visualize it, as it is not necessary that the user will actually use all the data that s/he queries. 

The architectural process involves logging the user onto the system and taking the user query, 

communicating with the appropriate data source and extracting the relevant metadata from the data source 

using one of several pre-written plugs. The metadata extracted by the plug is encapsulated in XML tags so 

as to compress it and provide a rich stream of information to the server. The extracted metadata is then 

parsed and 3D model information is assigned. This information is finally sent to all the clients in the 

appropriate virtual spaces. This communication medium is primarily an Internet scale, publish-subscribe 

event system, in our case, we use Siena [19]. Example screenshot of the final result can be seen in Figure 2 

and 5 and in Section 8. 
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The above process allows both administrators as well as users to create rooms in the world. 

Therefore, a user can browse through existing rooms that s/he has access to and interact with the objects 

that populate that space, as well as change his surrounding environment by mapping more data sources. 

This provides for an excellent teamwork oriented environment, especially for educational purposes as an 

instructor can initially create the world and populate it with class materials, for example: the class website, 

and data require for completion of assignments and projects. The users, once granted access to this space, 

can browse around much like they would a web browser. If container type objects, for example: ones that 

represent a directory in the back end source, are double clicked within CHIME, they would automatically 

create a new room for the user, extending from the current room, populated with all the objects mapped 

from those directories. In this way, both instructors and users can set up a hierarchy in the virtual 

environment that mirrors the original data source. And since the physics in the CVE does not have to match 

the physics of the real world, one can have an arbitrarily complex layout in the world. But the system 

would not limit visualization of only containers as rooms; one could set files to be containers as well where 

a file contains its application specific attributes. For example: an HTML file can contain links, images and 

text; a Word document could be comprised of images, tables, links, text, equations, etc. Given a 

corresponding FRAX plug for each of these elements as well as 3D objects to represent them with, CHIME 

could help visualize most any data type. 

Objects in the world can be clicked on, moved to different spaces as well as right-clicked on to 

access more information. Moving objects from one room to another is possible and it does not affect the 

back end source. This is highly advantageous as an instructor could set up one space where all the students 

could meet, and it is here that the instructor could pull in materials from many data sources, giving the 

users access to all of them in one homogenous environment. Additionally, a user has access to a 2.5D 

overview map of the world in order to help navigate the world. To enhance the group experience there is 

not only a regular instant messaging system but also a group level chat system built in. The users are also 

provided with a history of their actions if they wish to revert back to a previous room. CHIME also 

provides additional unlinked doors in every room for users to link to other data sources. 

User movement however was the most interesting aspect with respect to the VECTORS plugin as 

it employed a P2P model. The server knows where all the users are at any given time, but only at a room 

level granularity. And, as mentioned earlier, all communication between the server and the clients takes 

place over the event system. Since user position synchronization is a high frequency process, the 

publish/subscribe event system did not make for a good vehicle for this job, especially since the event 

system would add a large parsing overhead to each event that was as simple as coordinates in 3-space. We 

therefore do user synchronization using UDP packets on a peer-to-peer basis. The server sends every client 

an updated list of users in his/her room and the user would then in turn send position updates to each of 

those clients over a UDP stream. This peer-to-peer model is a proven one that works well for most 

commercial game systems [23] and we found it to give excellent results as well. This had the added benefit 

that is provided a broadcast stream over which we could also do our video synchronization. 
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4.2 VECTORS 
One of our goals for CHIME was to integrate video synchronization for users. Columbia 

University offers taped courses over the internet as part of their Columbia Video Network (CVN) 

department. These courses work well when the class is simply lecture based geared towards individuals 

with assignments that do not require group work. However, for courses like Software Engineering and 

Operating Systems, where team based software development is one of the critical pedagogical 

requirements, CVN is unable to deliver a full experience, especially since the students registered for these 

courses are geographically dispersed. Teams of students may need to watch multiple class lectures together 

and collaborate on them as they are in progress. 

Students are not required by CVN to have the same resources in terms of bandwidth. In order to 

facilitate synchronized video feeds to diverse users, we had to deliver pre-canned and pre-processed 

semantically structured videos over heterogeneous Internet links to heterogeneous platforms in an efficient 

and adaptive manner. Video thus becomes an additional legitimate resource for mutual exploration in a 

distributed team’s workflow. 

Approach:  
Liu et al. [15] describe a similar project, however they are simply concerned with the QoS of the 

video and therefore their approach involves compression techniques working with Mpeg-7 video. 

Moreover, they do not have the added requirement of embedding their video stream in a CVE. Our 

approach involves semantic structuring of the video, using technology previously developed by Liu and 

Kender [16]. Given this rich video stream consisting of the most representative frames, in terms of content, 

of the video, our goal was to try and give each user the best possible set of frames in order to enhance the 

video watching experience as much as possible while staying synchronized. However, instead of following 

approaches like those employed in commercial multimedia applications like Real Player 

(http://www.real.com/) or QuickTime (http://www.quicktime.com/) that drop every nth frame upon 

encountering network lag, which may have the negative side-effect of dropping important segments of the 

video, we procure separate levels of key frame density, each targeted at different bandwidth levels. 

 We still, however, have to give each client the correct video feed. In order to do this, our approach 

was four fold - 

1. Pre-fetch as many of the key frames as possible at the highest possible quality to the client before a pre-

determined meeting time for the group. Meeting times can be ascertained by probing the user’s schedule or 

by simply getting this information from the student directly. Though, it turns out that most videos are 

watched impromptu without any prior notice. 

2. Probe the clients’ bandwidth and number of cached frames and report results to the system periodically. 

3. React to bandwidth changes in real time by lowering/raising the client to a lower or higher quality feed. 

4. Allow users to pause, rewind, etc. in synchrony while discussing the lecture material via “chat”. 
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Figure 3 - The VECTORS Workflow 

 

All the video streams are made available by the video server. Probing is done by using software probes [13] 

[14], and reports of any changes are sent to the respective clients. Each client receives data and based on 

how much video it has in cache, its current position in the video and its bandwidth, the client determines 

what the highest quality frame it can download next successfully before it has to view it; and downloads it. 

This will continue until the end of the video.  

4.2.1 The server 

VECTORS was proposed to analyze automatic methods for deriving semantic video structure, by 

finding large-scale temporal and spatial patterns, by detecting redundancies and semantic cross-correlations 

over long disjoint time intervals, and by compressing, indexing, and highlighting video segments based on 

semantically tagged visual sequences. We further explored user interaction in distributed environments in 

both a three-dimensional virtual world as well as a local two-dimensional client. We also analyzed various 

server cluster configurations, wire protocols, proxies, local client caches, and video management schemes. 

The pre-canned and pre-tagged semantically structured video (Figure 4), was placed on the video 

server. Since the server simply provided the frames to each of the clients, the decision-making 

responsibility regarding synchronization fell upon the clients themselves; thus leading to a non-centralized 

decision-making system. The ultimate goal of the server was to analyze classes of particular server cluster 

configurations, wire protocols, proxies, local client caches, and video management schemes; however, in 

experiments, we simply treated the server as a black-box that would provide frames over an HTTP stream 

upon demand from a client. Example of a video frame hierarchy is shown in Figure 4, where we see two 

example levels of the same video stream. Level 1 has a sparse set of frames while Level 2 is denser, even 

though they semantically and pedagogically contain the same content. We would like to reiterate that audio 

was not semantically compressed and was therefore available as a separate and single file for the clients to 

download and play synchronously with the video stream. 
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Ultimately, the server consisted of two components, the semantically structured videos provided 

by Liu and Kender, and the scalable, proxy based video server. Since our goals lay in measuring the 

effectiveness of the video synchronization in the 3D virtual client, we set up a simple web-server that 

contained the structured video content and simply served it to the clients. 

 

 
Figure 4 - Video Frame Hierarchy 

 

4.2.2 The Client 
The VECTORS Client Application, at the initial stage of development, focused on implementing, or at least 

making significant efforts to implement several functionalities which serve as the core of the VECTORS 

client side technology. 

 

 
Figure 5 - CHIME world screenshot with objects populating a typical room 
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The client that we chose for video synchronization was the CHIME client as it provided the 

perfect pluggable framework that allows users to see each other in a collaborative world where they can 

interact with one another and objects that represent heterogeneous back end data sources. The CHIME 

client, as explained above, is an authoring tool and perfect for pedagogical environments. 

Since CHIME had the ability to visualize heterogeneous data sources and was built as a 

framework, VECTORS was built as a plug-in that visualized video with the added component that 

synchronized the video. Some of the basic components added to the VECTORS plug-in are – 

• GroupWare Synchronization – It provides a group-wide viewing session of a given video, each 

client remaining in sync with an overall video timeline.  This is accomplished even if the various clients are 

at different network speeds (And thus are downloading a variety of different frames from the structured 

hierarchy that exists on the server). 

• Video Player in CHIME’s 3D Environment – The player is designed to work inside the existing 3D 

environment offered by CHIME. CHIME utilizes a Crystal Space graphics engine, and all aspects of the 

video player must comply with constraints set forth by Crystal Space to ensure error free, 3D video display. 

• Downloadable Video over HTTP – The video components after being processed and placed on the 

server, consists of an audio stream (typically a highly compressed, low quality sampled MP3 file, though it 

could be WAV or other popular audio formats), and a set of JPEG images which correspond to frames of 

the video at different points in time. These components are retrieved from the Web either before the video 

is run (in which case they will be cached for use at runtime), or during runtime, at which point they are 

cached for later use. Therefore, the server, upon processing the video stream into these subcomponents, 

must publish them to a web server, along with some meta data (such as the number of “compression levels” 

and start/end times for each frame at each compression level) 

• Adjustable based on Bandwidth- The client adjust its downloading strategy based on the available 

bandwidth, to switch to different compression levels offered by the server. A compression level is defined 

as a set of key video frames, a subset of the overall sequential list of JPEG images from a broken-down 

MPEG video, where each member of this subset is declared to persist over a specific time range. 

• Cache – Videos, or portions thereof, that were previously downloaded should be stored locally for 

later use, in an effort to eliminate duplicate downloading. The cache should ideally store all levels of 

compression for a given video, and provide the best available compression level in response to any frame 

request. At the same time, the cache should abstract all methods of storage from the player, and simply 

provide the player with the location on disk of the JPEG frame file to play. 

• Cache Controller – The intelligence behind the client that allows the users to stay synchronized. 

4.3 Implementation Details 
In order to get the system to work, we created a small UI within CHIME (see section 8 for figures) 

that activated a hook that we added into the 3D client. When activated, it would deploy a screen/portal on 

wall of the room that the client’s avatar was in so as to display the downloaded frames within it. Each client 

was also gives a small cache where they could store pre-fetched video, several probes to monitor the 
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various variables that would control synchronization as well as a cache controller. 

The probes included a cache monitor, a bandwidth monitor and a monitor that stated the exact 

location of the video a client was watching. These are software probes [13] that gather simple metrics and 

send them back to the cache controller for evaluation, over the publish-subscribe event notification system. 

As pointed out before, each client sends position updates via a UDP stream to all fellow clients in 

neighboring rooms so that fellow clients could render avatars in their respective accurate positions. The 

CHIME servers as well as the Video server note all the clients that start up any given video and assume that 

they are part of the same student group that wishes to watch the video. Updates about time index of the 

video that a client is watching is sent to all the other clients in the group. 

Before the video even starts, the client tries to ascertain whether the user wishes to watch a 

particular video by looking up the workgroup calendar and starts to pre-fetch the highest density of frames 

from the video server so as to provide the best possible video experience. The pre-fetching module is the 

same component activated when a client pauses a video allowing the client to buffer the next few frames in 

the idle time. 

The cache controller gets information about the contents of the cache, i.e. about the availability of 

extra frames in the timeline, as well as the position in the video and the current bandwidth (calculated by a 

simple ping to the server). The cache controller, since having already parsed the hierarchy of frames 

available in every compression level (gotten by downloading a pre-determined structured document about 

the frames), makes a decision about which frame to download next in the available time between current 

time and the time when that frame will be displayed based on available download. The cache controller 

also knows the duration for which each from will be displayed on the client’s screen and uses this 

information to try and optimize on the level and density of frames to be downloaded. Any pauses by the 

client are simply utilized to download the highest quality and density of frames possible before the client 

restarts the video again. 

CHIME clients synchronize with one another (peer-to-peer) by sending a time index in the UDP 

stream at least once every 0.33 seconds. Therefore, our aim was to keep the client always synchronized 

within 0.33 seconds of one another. If any client got out of sync with the others, the cache controller for 

that client would either instruct the client to lower or raise the level of frames that were being downloaded. 

All VCR functions like play/stop and pause events were sent on the event bus since they were 

more major events that required action rather than just adjusting. They were also events that needed 

guaranteed action, something that a UDP packet cannot guarantee. All the clients play, stop or pause 

depending on the event sent out and acted on the same. 

A workflow engine [26] is typically centralized and our workflow engine here had to keep the 

client in synchrony. Since that was the cache controller’s job, the cache controller served as the workflow 

engine for this project. We found that even though the cache controller was decentralized, it provided us 

with good results because the logic control for each cache controller was the same. You can find results of 

our tests in Section 8.  
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5. Testing and Results 
We used a test bed of up to 10 clients ranging from 400MHz laptops on a 56Kbit modem up to a 

3GHz machine on a 100Mbit network. The resulting experiment kept the videos synchronized between all 

10 clients within an error of approximately 4.38 seconds (for the first 7 minutes of the video), i.e. at no 

point was any client more than 4.38 seconds apart from any other. However, at this point, the system 

started showing more of a disparity especially on the laptops that do not have native 3D hardware support 

built in and therefore have to render the virtual environment in Software mode, thus slowing them down 

further. Figure 6 shows the extremely small variance between the various clients through the entire video 

while Figure 7 shows that even when we had a test bed of ten clients, they were essentially synchronized 

through the entire video content. 

Note: Our lab has also developed an alternative “autonomic computing” approach to video 

synchronization for virtual classrooms, separately from CHIME but with better performance characteristics 

-  it can support up to 10 clients within 10-15 milliseconds skew. See [6].  

Some points to note during our test – 

1) We started all the client’s videos together. We did not attempt to have a client start significantly 

after the others to that it could “catch up” with the rest. 

2) Our tests did not include any handheld devices. However, as long as a CHIME client would run on 

a handheld device and the PDA has internet connectivity, the synchronization should work in the 

same way. 

3) We noticed that there was tremendous network congestion during the test. After investigation we 

found that the previously sparse traffic on account of the UDP streams had gone up tremendously. 

We found that since the position update events were relatively rare, when we used UDP streams 

for synchronization, the O(n2) streams (where n is the number of clients) with updates sent every 

0.33 seconds from each client to every other client caused a substantial amount of traffic on the 

network. 

4) We found the 3D client of CHIME to be an extremely heavy weight system that took up a lot of 

system resources on even the fastest machines used in our test. Therefore each system found it 

hard to cope with simple task like parsing of synchronization data. 

5) Related to the above point, we found that the system stopped working after 7 minutes of run time 

on account of running out of system resources. 

Overall, our results show that with the video synchronization works as well as the collaborative 

tools available.  VECTORS was extremely dependent on the stability of CHIME. However, stability issues 

aside, the system made for an excellent environment for enriching the educational experience. In small lab 

tests, simulated groups could collaborate on videos well and since VECTORS operated on a highly 

configurable pedagogical environment, the groups were able to access relevant educational materials when 

necessary (or prompted by the video). VECTORS successfully supported synchronized viewing of lecture 

videos, and allowed VCR functions like pause, rewind, etc. to operate in synchrony while discussing the 
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lecture material via “chat”.  VECTORS was successfully able to attend to the needs of the technologically 

disenfranchised, i.e. those with dialup or other relatively low-bandwidth networking. 
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Figure 6 – Average variance between clients 
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Figure 7 – Performance of 10 clients 

 

6. Future Work 
The 3D environment in its current form is extremely resource intensive in the form of the CPU 

and graphics card. This is mainly because of our choice of the 3D engine and the fact that we use dynamic 
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3D objects instead of static ones as the engine traditionally supports. One of our goals is to work with the 

developers of the engine to help alleviate some of the loads. 

We will also be working on improving the way users view the state of their peers in the 

environment, so that they get a true graphical representation of which object the user is working on. Further 

work would also include increasing this granularity by allowing users, if given access, the ability to see 

what aspects of the objects the users are affecting. 

We are currently using Siena as the event system that is able to pass about 400 events per second. 

We are in the process of moving over to the Elvin event system (http://elvin.dstc.edu.au/) that is an 

industrial strength event system that can transmit as many as 80,000 events per second thus significantly 

increasing the potential for scalability. 

Additionally, introducing the concept of workgroups where users could log in and set up their 

schedules would greatly improve the video quality that users watch due to the pre-fetching features. 

Moreover, the workflow engine would be able to better track the groups. 

Finally, our current system employs a very simple security model. We would like to move to one 

that is driven by an access control list. 

 

7. Conclusion 
We had presented a system, VECTORS, for the integration of lecture videos, with video 

synchronization, into a low-bandwidth virtual environment specifically designed for virtual classrooms for 

distance learning students. 

This system has been designed as a plug-in to the previously developed collaborative virtual 

environment (CVE), CHIME, for small-group virtual classrooms. VECTORS uses a peer-to-peer 

synchronization approach to support group viewing of lecture videos. By utilizing this approach, we have 

found that groups of co-located or non-co-located students can work together on group based assignments. 

In order to cater to group members with low bandwidths, instead of going with traditional approaches that 

involve skipping every nth frame of a video, VECTORS employs semantically compressed and pre-canned 

videos and adjusts the clients among various compression levels so that they stay semantically 

synchronized. The videos are displayed as a sequence of JPEGs on the walls of a 3D virtual room, 

requiring fewer local multimedia resources than full motion MPEGs.  

 As the results demonstrate, we have achieved a high degree of synchrony and have thus created a 

robust and useful pedagogical environment. 
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8. Figures 

 
Figure 8 - VECTORS screenshot showing the video and team member 

  

 
Figure 9 - VECTORS screenshot showing synchronized video and team member and objects 
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