Abstract
This paper contributes to Algebraic Concept Analysis by examining connections between Formal Concept Analysis and Algebraic Geometry. The investigations are based on polynomial contexts (over a field K in n variables) which are defined by \({\mathbb{K}}^{(n)} := (K^n,K[x_1,\ldots,x_n],\perp)\) where \(a \perp f :\Leftrightarrow f(a)=0\) for a â K n and any polynomial fâ K[x 1,...,x n ]. Important notions of Algebraic Geometry such as algebraic varieties, coordinate algebras, and polynomial morphisms are connected to notions of Formal Concept Analysis. That allows to prove many interrelating results between Algebraic Geometry and Formal Concept Analysis, even for more abstract notions such as affine and projective schemes.
This paper is an adapted version of the first part of [Be99]
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Becker, T.: Formal Concept Analysis and Algebraic Geometry, Dissertation, TU Darmstadt. Shaker Verlag, Aachen (1999)
Becker, T., Weispfennig, V.: Groebner Basis. A computational approach to Commutative Algebra. Springer, New York (1991)
Brodmann, M.: Algebraische Geometrie. Eine Einfßhrung. Birkhäuser, Basel (1989)
Cox, D., Little, J., OâShea, D.: Ideals, varieties and algorithms. Springer, New York (1992)
Fischer, G.: Ebene Algebraische Kurven. Vieweg, Braunschweig (1994)
Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations. Springer, Heidelberg (1999)
Grothendieck, A., Dieudonne, J.: Elements de geometrie algebrique. Publ. Math., No.4, Institut des Hautes Etudes Scientifiques, Paris (1960)
Hartshorne, R.: Algebraic Geometry. Springer, Heidelberg (1977)
Hartung, G., Kamara, M., Sacarea, C.: A topological representation of polarity lattices. Acta Math. Univ. Comenianae LXVIII, 49â70
Kunz, E.: EinfĂźhrung in die Kommutative Algebra und algebraische Geometrie. Vieweg, Braunschweig (1980)
Kunz, E.: Ebene algebraische Kurven. Regensburger Trichter 23 (1991)
Kunz, E.: EinfĂźhrung in die Algebraische Geometrie. Vieweg, Braunschweig (1997)
Schubert, H.: Topologie. B. G. Teubner, Stuttgart (1964)
Xia, W.: Morphismen als formale Begriffe. Darstellung und Erzeugung, Dissertation, TU Darmstadt. Verlag Shaker, Aachen (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Š 2005 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Becker, T. (2005). Features of Interaction Between Formal Concept Analysis and Algebraic Geometry. In: Ganter, B., Stumme, G., Wille, R. (eds) Formal Concept Analysis. Lecture Notes in Computer Science(), vol 3626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11528784_3
Download citation
DOI: https://doi.org/10.1007/11528784_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27891-7
Online ISBN: 978-3-540-31881-1
eBook Packages: Computer ScienceComputer Science (R0)