Skip to main content

States, Transitions, and Life Tracks in Temporal Concept Analysis

  • Chapter
Formal Concept Analysis

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3626))

  • 2442 Accesses

Abstract

Based on Formal Concept Analysis, we introduce Temporal Concept Analysis as a temporal conceptual granularity theory for movements of general objects in abstract or “real” space and time such that the notions of states, situations, transitions and life tracks of objects in conceptual time systems are defined mathematically. The life track lemma is a first approach to granularity reasoning. Applications of Temporal Concept Analysis in medicine and in chemical industry are demonstrated as well as recent developments of computer programs for graphical representations of temporal systems. Basic relations between Temporal Concept Analysis and other temporal theories, namely theoretical physics, mathematical system theory, automata theory, and temporal logic are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arbib, M.A.: Theory of Abstract Automata. Prentice Hall, Englewood Cliffs (1970)

    Google Scholar 

  2. Aristoteles: Philosophische Schriften in sechs Bänden. Felix Meiner Verlag Hamburg (1995)

    Google Scholar 

  3. Aristotle: The complete works of Aristotle. In: Barnes, J. (ed.) Bollingen Series; 71:2, vol. I, II, Princeton University Press, Princeton (1995)

    Google Scholar 

  4. Becker, P.: Multi-dimensional Representation of Conceptual Hierarchies. In: Stumme, G., Mineau, G. (eds.) Proceedings of the 9th International Conference on Conceptual Structures Supplementary Proceedings ICCS, Department of Computer Science, pp. 33–46. University Laval (2001)

    Google Scholar 

  5. Bertalanffy, L.v.: General System Theory. George Braziller, New York (1969)

    Google Scholar 

  6. Birkhoff, G.: Lattice theory, 3rd edn. Amer.Math.Soc., Providence (1967)

    MATH  Google Scholar 

  7. Butterfield, J. (ed.): The Arguments of Time. Oxford University Press, Oxford (1999)

    Google Scholar 

  8. Butterfield, J., Isham, C.J.: On the Emergence of Time in Quantum Gravity. In: Butterfield, J. (ed.) The Arguments of Time, Oxford University Press, Oxford (1999)

    Google Scholar 

  9. Castellani, E. (ed.): Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton University Press, Princeton (1998)

    Google Scholar 

  10. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, London (1974)

    MATH  Google Scholar 

  11. Einstein, A.: Zur Elektrodynamik bewegter Körper. Annalen der Physik 17, 891–921 (1905)

    Article  Google Scholar 

  12. Einstein, A.: Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik 4, 411–462 (1907)

    Google Scholar 

  13. Einstein, A.: The collected papers of Albert Einstein. The Swiss Years: Writings, 1900-1909, vol. 2. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  14. Erné, M.: Einführung in die Ordnungstheorie. B.I.Wissenschaftsverlag, Mannheim (1982)

    MATH  Google Scholar 

  15. Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal Logic – Mathematical Foundations and Computational Aspects, vol. 1. Clarendon Press, Oxford (1994)

    Google Scholar 

  16. Ganter, B., Stahl, J., Wille, R.: Conceptual measurement and many-valued contexts. In: Gaul, W., Schader, M. (eds.) Classification as a tool of research, pp. 169–176. North-Holland, Amsterdam (1986)

    Google Scholar 

  17. Ganter, B., Wille, R.: Conceptual Scaling. In: Roberts, F. (ed.) Applications of combinatorics and graph theory to the biological and social sciences, pp. 139–167. Springer, New York (1989)

    Google Scholar 

  18. Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations (translated from the German by Cornelia Franzke). Springer, Heidelberg (1999)

    Google Scholar 

  19. Gottwald, S. (ed.): Lexikon bedeutender Mathematiker. Bibliographisches Institut (1990)

    Google Scholar 

  20. Hawking, S.: A Brief History of Time: From the Big Bang to Black Holes. Bantam Books, New York (1988)

    Google Scholar 

  21. Hawking, S., Penrose, R.: The Nature of Space and Time. Princeton University Press, Princeton (1996)

    MATH  Google Scholar 

  22. Isham, C.J.: Time and Modern Physics. In: Ridderbos, K. (ed.) Time, pp. 6–26. Cambridge University Press, Cambridge (2002)

    Chapter  Google Scholar 

  23. Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory. McGraw-Hill Book Company, New York (1969)

    MATH  Google Scholar 

  24. Kant, I.: Kritik der reinen Vernunft. In: Weischedel, W. (ed.) Immanuel Kant – Werke in sechs Bänden. Band II, Insel Verlag, Wiesbaden (1956) (first edition 1781)

    Google Scholar 

  25. Kollewe, W., Skorsky, M., Vogt, F., Wille, R.: TOSCANA – ein Werkzeug zur begrifflichen Analyse und Erkundung von Daten. In: Zickwolff, M., Wille, R. (Hrsg.) (eds.) Begriffliche Wissensverarbeitung – Grundfragen und Aufgaben, pp. 267–288. B.I.-Wissenschaftsverlag, Mannheim (1994)

    Google Scholar 

  26. Krabs, W.: Dynamische Systeme: Steuerbarkeit und chaotisches Verhalten. B.G.Teubner Stuttgart, Leipzig (1998)

    MATH  Google Scholar 

  27. Lin, Y.: General Systems Theory: A Mathematical Approach. Kluwer Academic/ Plenum Publishers, New York (1999)

    MATH  Google Scholar 

  28. Luce, R.D., Krantz, D.H., Suppes, P., Tversky, A.: Foundations of Measurement, vol. 3. Akademic Press, San Diego (1990)

    MATH  Google Scholar 

  29. Mesarovic, M.D., Takahara, Y.: General Systems Theory: Mathematical Foundations. Academic Press, London (1975)

    MATH  Google Scholar 

  30. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  31. Post, E.L.: Finite combinatory processes – Formulation. J.Symbolic Logic 1, 103–105 (1936)

    Article  MATH  Google Scholar 

  32. Spangenberg, N.: Familienkonflikte eßgestörter Patientinnen: Eine empirische Untersuchung mit Hilfe der Repertory Grid-Technik. Habilitationsschrift am FB Humanmedizin der Justus-Liebig-Universität Gießen (1990)

    Google Scholar 

  33. Spangenberg, N., Wolff, K.E.: Comparison of Biplot Analysis and Formal Concept Analysis in the case of a Repertory Grid. In: Bock, H.H., Ihm, P. (eds.) Classification, Data Analysis, and Knowledge Organization, pp. 104–112. Springer, Heidelberg (1991)

    Google Scholar 

  34. Spangenberg, N., Wolff, K.E.: Datenreduktion durch die Formale Begriffsanalyse von Repertory Grids. In: Scheer, J.W., Catina, A. (eds.) Einführung in die Repertory Grid- Technik, Band 2, Klinische Forschung und Praxis, pp. 38–54. Verlag Hans Huber, Bern (1993)

    Google Scholar 

  35. Turing, A.M.: On computable numbers with an application to the Entscheidungsproblem. Proc. London Math. Soc. 2(43), 230–265 (1936); A correction, ibid. 43, 544-546 (1936)

    Google Scholar 

  36. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem, http://www.abelard.org/turpap2/tp2-ie.asp#section-9

  37. van Benthem, J.: Temporal Logic. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming. Epistemic and Temporal Reasoning, vol. 4, pp. 241–350. Clarendon Press, Oxford (1995)

    Google Scholar 

  38. von Hentig, H.: Magier oder Magister? Uber die Einheit der Wissenschaft im Verständigungsprozess. Klett-Verlag, Stuttgart (1972)

    Google Scholar 

  39. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)

    Google Scholar 

  40. Wille, R.: Introduction to Formal Concept Analysis. In: Negrini, G. (ed.) Modelli e modellizzazione. Models and modelling, pp. 39–51. Consiglio Nazionale delle Ricerche, Instituto di Studi sulli Ricerca e Documentatione Scientifica, Roma (1997)

    Google Scholar 

  41. Wille, R.: Conceptual graphs and Formal Concept Analysis. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS, vol. 1257, pp. 290–303. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  42. Wille, R.: Dyadic Mathematics – Abstractions from Logical Thought. In: Denecke, K., Erné, M., Wismath, S.L. (eds.) Galois Connections and Applications, pp. 453–498. Kluwer, Dordrecht (2004)

    Google Scholar 

  43. Wolff, K.E., Stellwagen, M.: Conceptual optimization in the production of chips. In: Janssen, J., Skiadas, C.H. (eds.) Applied Stochastic Models and Data Analysis, vol. 2, pp. 1054–1064. World Scientific Publishing Co. Pte. Ltd, Singapore (1993)

    Google Scholar 

  44. Wolff, K.E.: A first course in Formal Concept Analysis – How to understand line diagrams. In: Faulbaum, F. (ed.) SoftStat 1993, Advances in Statistical Software, vol. 4, pp. 429–438. Gustav Fischer Verlag, Stuttgart (1994)

    Google Scholar 

  45. Wolff, K.E.: Conceptual Quality Control in Chemical Distillation Columns. In: Janssen, J., McClean, S. (eds.) Applied Stochastic Models and Data Analysis, pp. 652–654. University of Ulster (1995)

    Google Scholar 

  46. Wolff, K.E.: Anwendungen der Formalen Begriffsanalyse in der Meßtheorie und der Meßpraxis. In: Hofmann, H., Richter, D., Zeidler, C. (eds.) Informationsgewinnung aus Meßdaten. 6. Arbeitsgespräch der Fachgruppe Physik/Informatik/Informationstechnik. 122. PTB-Seminar, Physikalisch-Technische Bundesanstalt, Berlin (1995)

    Google Scholar 

  47. Wolff, K.E.: Concepts, States, and Systems. In: Dubois, D.M. (ed.) Computing Anticipatory Systems. CASYS 1999 – Third International Conference, Liège, Belgium (1999); American Institute of Physics, Conference Proceedings, vol. 517, pp. 83-97 (2000)

    Google Scholar 

  48. Wolff, K.E.: Towards a Conceptual System Theory. In: Sanchez, B., Nada, N., Rashid, A., Arndt, T., Sanchez, M. (eds.) Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, SCI 2000. Information Systems Development, International Institute of Informatics and Systemics, vol. II, pp. 124–132 (2000)

    Google Scholar 

  49. Wolff, K.E.: A Conceptual View of Knowledge Bases in Rough Set Theory. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, p. 220. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  50. Wolff, K.E.: Temporal Concept Analysis. In: Mephu Nguifo, E. (ed.) ICCS 2001 International Workshop on Concept Lattices-Based Theory, Methods and Tools for Knowledge Discovery in Databases, pp. 91–107. Stanford University, Palo Alto (2001)

    Google Scholar 

  51. Wolff, K.E.: Transitions in Conceptual Time Systems. In: Dubois, D.M. (ed.) International Journal of Computing Anticipatory Systems, CHAOS 2002, vol. 11, pp. 398–412 (2002)

    Google Scholar 

  52. Wolff, K.E.: Interpretation of Automata in Temporal Concept Analysis. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 341–353. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  53. Wolff, K.E.: Concepts in Fuzzy Scaling Theory: Order and Granularity. In: 7th European Congress on Intelligent Techniques and Soft Computing, Aachen, vol. 132, pp. 63–75 (1999); Fuzzy Sets and Systems 132, 63-75 (2002)

    Google Scholar 

  54. Wolff, K.E., Yameogo, W.: Time Dimension, Objects, and Life Tracks - A Conceptual Analysis. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS, vol. 2746, pp. 188–200. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  55. Wolff, K.E.: ’Particles’ and ’Waves’ as Understood by Temporal Concept Analysis. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 126–141. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  56. Wolff, K.E., Yameogo, W.: Turing Machine Represention in Temporal Concept Analysis. To appear in the Proceedings of the 3rd International Conference on Formal Concept Analysis (2005)

    Google Scholar 

  57. Yameogo, W.: Time Conceptual Foundations of Programming. Master Thesis. Department of Computer Science at Darmstadt University of Applied Sciences (2003)

    Google Scholar 

  58. Zadeh, L.A.: The Concept of State in System Theory. In: Mesarovic, M.D. (ed.) Views on General Systems Theory, pp. 39–50. John Wiley & Sons, New York (1964)

    Google Scholar 

  59. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  60. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Part I: Inf. Science 8,199-249; Part II: Inf. Science 8, 301-357; Part III: Inf. Science 9, 43-80 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolff, K.E. (2005). States, Transitions, and Life Tracks in Temporal Concept Analysis. In: Ganter, B., Stumme, G., Wille, R. (eds) Formal Concept Analysis. Lecture Notes in Computer Science(), vol 3626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11528784_7

Download citation

  • DOI: https://doi.org/10.1007/11528784_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27891-7

  • Online ISBN: 978-3-540-31881-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics