Abstract
The potentials of formal concept analysis (FCA) for information retrieval (IR) have been highlighted by a number of research studies since its inception. With the proliferation of small-size specialised text databases available in electronic format and the advent of Web-based graphical interfaces, FCA has then become even more appealing and practical for searching text collections. The main advantage of FCA for IR is the possibility of eliciting context, which may be used both to improve the retrieval of specific items from a text collection and to drive the mining of its contents. In this paper, we will focus on the unique features of FCA for building contextual IR applications as well as on its most critical aspects. The development of a FCA-based application for mining the web results returned by a major search engine is envisaged as the next big challenge for the field.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agosti, M., Melucci, M., Crestani, F.: Automatic authoring and construction of hypertexts for information retrieval. ACM Multimedia Systems 3, 15–24 (1995)
Amati, G., Carpineto, C., Romano, G.: FUB at TREC-10 Web Track: A Probabilistic Framework for Topic Relevance Term Weighting. In: Proceedings of the 10th Text REtrieval Conference (TREC-10), NIST Special Publication 500-250, pp. 182–191, Gaithersburg, MD, USA (2001)
Berenci, E., Carpineto, C., Giannini, V., Mizzaro, S.: Effectiveness of keywordbased display and selection of retrieval results for interactive searches. International Journal on Digital Libraries 3(3), 249–260 (2000)
Bordat, J.P.: Calcul pratique du treillis de Galois d’une correspondance. Math. Sci. Hum. 96, 31–47 (1986)
Card, S., Moran, T., Newell, A.: The psychology of human-computer interaction. Lawrence Erlbaum Associates, London (1983)
Carpineto, C., De Mori, R., Romano, G., Bigi, B.: An information theoretic approach to automatic query expansion. ACM Transactions on Information Systems 19(1), 1–27 (2001)
Carpineto, C., Romano, G.: An order-theoretic approach to conceptual clustering. In: Proceedings of the 10th International Conference on Machine Learning, Amherst, MA, USA, pp. 33–40 (1993)
Carpineto, C., Romano, G.: Dynamically bounding browsable retrieval spaces: an application to Galois lattices. In: Proceedings of RIAO 1994: Intelligent Multimedia Information Retrieval Systems and Management, New York, New York USA, pp. 520–533 (1994)
Carpineto, C., Romano, G.: ULYSSES: A lattice-based multiple interaction strategy retrieval interface. In: Blumenthal, U., Gornostaev (eds.) Human- Computer Interaction, 5th International Conference, EWHCI, Selected Papers, pp. 91–104. Springer, Berlin (1995)
Carpineto, C., Romano, G.: Information retrieval through hybrid navigation of lattice representations. International Journal of Human-Computer Studies 45(5), 553–578 (1996)
Carpineto, C., Romano, G.: A lattice conceptual clustering system and its application to browsing retrieval. Machine Learning 24(2), 1–28 (1996)
Carpineto, C., Romano, G.: Effective reformulation of Boolean queries with concept lattices. In: Proceedings of the 3rd International Conference on Flexible Query-Answering Systems, Roskilde, Denmark, pp. 83–94 (1998)
Carpineto, C., Romano, G.: Order-Theoretical Ranking. Journal of the American Society for Information Science 51(7), 587–601 (2000)
Carpineto, C., Romano, G., Giannini, V.: Improving retrieval feedback with multiple term-ranking function combination. ACM Transactions on Information Systems 20(3), 259–290 (2002)
Cole, R., Eklund, P.: Browsing semi-structured web texts using formal concept analysis. In: Proceedings of the 9th International Conference on Conceptual Structures, Stanford, CA, USA, pp. 319–332 (2001)
Cole, R., Eklund, P., Stumme, G.: Document retrieval for e-mail search and discovery using formal concept analysis. Applied Artificial Intelligence 17(3), 257–280 (2003)
Cole, R., Stumme, G.: CEM: A Conceptual Email Manager. In: Proceedings of the 8th International Conference on Conceptual Structures, Darmstadt, Germany, pp. 438–452 (2000)
Efthimiadis, E.: Query expansion. In: Williams, M.E. (ed.) Annual Review of Information Systems and Technology, vol. 31, pp. 121–187. American Society for Information Science, Silver Spring, Maryland, USA (1996)
Ferré, S., Ridoux, O.: A file system based on concept analysis. In: Proceedings of the 1st International Conference on Computational Logic, London, UK, pp. 1033–1047 (2000)
Ganter, B.: Two basic algorithms in concept analysis. Technical Report FB4– Preprint No. 831, TU Darmstadt, Germany (1984)
Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations. Springer, Heidelberg (1999)
Gershon, N., Card, S.K., Eick, S.G.: Information visualization tutorial. In: Proceedings of ACM CHI 1998: Human Factors in Computing Systems, Los Angeles, CA, USA, pp. 109–110 (1998)
Gifford, D.K., Jouvelot, P., Sheldon, M.A., JrO’Toole, J.W.: Semantic file systems. In: Proceedings of the 13th ACM Symposium on Operating Systems Principles, pp. 16–25 (1991)
Godin, R., Gecsei, J., Pichet, C.: Design of a browsing interfaces for information retrieval. In: Proceedings of the 12th Annual International ACM SIGIR Conference on Reasearch and Development in Information Retrieval, pp. 32–39 (1989)
Godin, R., Mili, H.: Building and Maintaining Analysis Level Class Hierarchies Using Galois Lattices. In: Proceedings of the 8th Annual Conference on Object Oriented Programming Systems Languages and Applications, Washington, D.C., USA, pp. 394–410 (1993)
Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms based on Galois lattices. Computational Intelligence 11(2), 246–267 (1995)
Godin, R., Missaoui, R., April, A.: Experimental comparison of navigation in a Galois lattice with conventional information retrieval methods. International Journal of Man-Machine Studies 38, 747–767 (1993)
Godin, R., Saunders, E., Jecsei, J.: Lattice model of browsable data spaces. Journal of Information Sciences 40, 89–116 (1986)
Gopal, B., Manber, U.: Integrating content-based access mechanisms with hierarchical file systems. In: Proceedings of 3rd Symposium on Operating Systems Design and Implementation, New Orleans, Louisiana, USA, pp. 265–278 (1999)
Hearst, M.: User interfaces and visualization. In: Baeza-Yates, R., Ribeiro- Neto, B. (eds.) Modern Information Retrieval, pp. 257–322. ACM Press, New York (1999)
Hearst, M.A.: Untangling text data mining. In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics (ACL 1999), College Park, MD, USA (1999)
Hoaglin, D.C., Mosteller, F., Tukey, J.W.: Understanding robust and exploratory data analysis. John Wiley & Sons, Inc., Chichester (1983)
Joho, H., Sanderson, M., Beaulieu, M.: Hierarchical approach to term suggestion device. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland, p. 454 (2002)
Karp, D., Schabes, Y., Zaidel, M., Egedi, D.: A freely available wide coverage morphological analyzer for English. In: Proceedings of the 14th International Conference on Computational Linguistics (COLING 1992), Nantes, France, pp. 950–955 (1992)
Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. Journal of Experimental and Theoretical Artificial Intelligence 14(2–3), 189–216 (2002)
Lindig, C.: Concept-based component retrieval. In: Working notes of the IJCAI 1995 workshop: Formal Approaches to the Reuse of Plans, Proofs, and Programs, Montreal, Canada, pp. 21–25 (1995)
Lindig, C.: Fast concept analysis. In: Working with conceptual structures – Contribution to the 8th International Conference on Conceptual Structures, Darmstadt, Germany, pp. 152–161 (2000)
Lucarella, D., Parisotto, S., Zanzi, A.: MORE: Multimedia Object Retrieval Environment. In: Proceedings of ACM Hypertext 1993, Seattle, WA, USA, pp. 39–50 (1993)
Maarek, Y., Berry, D., Kaiser, G.: An information retrieval approach for automatically constructing software libraries. IEEE Transactions on software Engineering 17(8), 800–813 (1991)
Norman, D.: Cognitive engineering. In: Norman, D., Draper, S. (eds.) User centered system design, pp. 31–61. Lawrence Erlbaum Associates, Hillsdale (1986)
Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Information. Information Processing Letters 71, 199–204 (1999)
Pedersen, G.: A browser for bibliographic information retrieval based on an application of lattice theory. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Pittsburgh, PA, USA, pp. 270–279 (1993)
Porter, M.F.: An algorithm for suffix stripping. Program 14, 130–137 (1980)
Priss, U.: A graphical interface for document retrieval based on Formal Concept Analysis. In: Proceedings of the 8th Midwest Artificial Intelligence and Cognitive Science Conference, Dayton, Ohio, USA, pp. 66–70 (1997)
Priss, U.: Lattice-based information retrieval. Knowledge Organization 27(3), 132–142 (2000)
Robertson, S.E., Walker, S., Beaulieu, M.M.: Okapi at TREC-7: Automatic Ad Hoc, Filtering, VLC, and Interactive track. In: Proceedings of the 7th Text REtrieval Conference (TREC-7), NIST Special Publication 500-242, Gaithersburg, MD, USA, pp. 253–264 (1998)
Rock, T., Wille, R.: Ein Toscana-Erkundungssystem zur Literatursuche. In: Stumme, G., Wille, R. (eds.) Begriffliche Wissensverarbeitung. Methoden und Anwendungen, pp. 239–253. Springer, Berlin (2000)
Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley, Reading (1989)
Snelting, G., Tip, F.: Reengineering class hierarchies using concept analysis. In: Proceedings of ACM SIGSOFT 6th International Symposium on Foundations of Software Engineering, Lake Buena Vista, FL, USA, pp. 99–110 (1998)
Soergel, D.: Mathematical analysis of documentation systems. Information storage and retrieval 3, 129–173 (1967)
Spink, A., Saracevic, T.: Interaction in information retrieval: selection and effectiveness of search terms. Journal of the American Society for Information Science 48(8), 741–761 (1997)
Spoerri, A.: InfoCrystal: Integrating exact and partial matching approaches through visualization. In: Proceedings of RIAO 1994: Intelligent Multimedia Information Retrieval, New York, New York USA, pp. 687–696 (1994)
Stumme, G.: Local scaling in conceptual data systems. In: Proceedings of the 6th International Conference on Conceptual Structures, Montpellier, France, pp. 308–320 (1998)
van der Merwe, F.J., Kourie, D.G.: Compressed pseudo-lattices. Journal of Experimental and Theoretical Artificial Intelligence 14(2–3), 229–254 (2002)
Vogt, F., Wachter, C., Wille, R.: Data analysis based on a conceptual file. In: Bock, H.-H., Lenski, W., Ihm, P. (eds.) Classification, Data Analysis and Knowledge Organization, pp. 131–140. Springer, Berlin (1991)
Vogt, F., Wille, R.: TOSCANA – A graphical tool for analyzing and exploring data. In: Tammassia, R., Tollis, I.G. (eds.) Graph Drawing 1994, pp. 226–233. Springer, Berlin (1995)
Wille, R.: Line diagrams of hierarchical concept systems. Int. Classif. 11(2), 77–86 (1984)
Willet, P.: Recent trends in hierarchic document clustering: a critical review. Information Processing & Management 24(5), 577–597 (1988)
Zamir, O., Etzioni, O.: Grouper: A dynamic clustering interface to web search results. WWW8/Computer Networks 31(11–16), 1361–1374 (1999)
Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to ad hoc information retrieval. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New Orleans, LA, USA, pp. 334–342 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Carpineto, C., Romano, G. (2005). Using Concept Lattices for Text Retrieval and Mining. In: Ganter, B., Stumme, G., Wille, R. (eds) Formal Concept Analysis. Lecture Notes in Computer Science(), vol 3626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11528784_9
Download citation
DOI: https://doi.org/10.1007/11528784_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27891-7
Online ISBN: 978-3-540-31881-1
eBook Packages: Computer ScienceComputer Science (R0)