
UCRL-CONF-206647

Performance-Oriented
Privacy-Preserving Data
Integration

R. K. Pon, T. Critchlow

September 20, 2004

2005 SIAM International Conference on Data Mining
Newport Beach, CA, United States
April 21, 2005 through April 23, 2005

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Performance-Oriented Privacy-Preserving Data Integration

 Raymond K. Pon Terence Critchlow

 University of California, Los Angeles Lawrence Livermore National Laboratory
 rpon@cs.ucla.edu critchlow@llnl.gov

Abstract

Current solutions to integrating private data with
public data have provided useful privacy metrics, such
as relative information gain, that can be used to
evaluate alternative approaches. Unfortunately, they
have not addressed critical performance issues,
especially when the public database is very large. The
use of hashes and noise yields better performance than
existing techniques while still making it difficult for
unauthorized entities to distinguish which data items
truly exist in the private database. As we show here,
leveraging the uncertainty introduced by collisions
caused by hashing and the injection of noise, we
present a technique for performing a relational join
operation between a massive public table and a
relatively smaller private one.

1. Introduction

Data is often generated or collected by various
parties, and the need to integrate the resulting disparate
data sources has been addressed by the research
community [1]-[6]. Although the heterogeneity of the
schemas has been addressed, most data integration
approaches have not yet efficiently addressed the
privacy requirements imposed by data sources.

Legal and social circumstances have made data
privacy a significant issue [7]-[8], resulting in the need
for Hippocratic databases (i.e., “database that include
privacy as a central concern”) [9], particularly in
sharing scientific or medical data. Without strong
privacy guarantees, often scientists refuse to share data
with other scientists for reasons, such as
subject/patient confidentiality, proprietary/sensitive
data restrictions, competition, and potential conflict
and disagreement [10].

When sharing scientific data, privacy quickly
becomes an issue. Suppose that a scientist wishes to
perform a query across a table in his private database
and a table in a public data warehouse in the most

efficient manner possible (shown in Figure 1).
Ignoring privacy restrictions, the problem is reduced to
a distributed database problem that can be solved by
shipping the scientist’s table to the warehouse and
performing the join at the warehouse. However, if the
scientist’s data set is proprietary, it cannot be sent
verbatim to the warehouse. The naive solution is for
the scientist to download the entire public table to his
local machine and perform the query there. But to do
so would be prohibitively expensive if the public table
is very large or the communications link is limited.

Assuming that schema reconciliation has already
been done, the problem can be formalized as the
following. Table),(BAR = from a small private

database db is to be joined with table),(CBS = from

a large data warehouse dw on column B, yielding the
desired table Goal = R

⋈
BS. Table R is private and the

identity of the data items in R can not be known by any
other party other than the owner of db. Table S is
publicly available and accessible.

It is assumed that the system operates in a semi-
honest model, where both parties will behave
according to their prescribed role in any given
protocol. However, there are no restrictions on the use
of information that has been learned during the data
exchange after the protocol is completed. dw is treated
as the adversary. To describe the level of privacy
preserved, relative information gain is used.

To address this problem, we augment the well-
known semi-join framework [11], “hiding” the actual
values of the join column of table R by hashing them
and including additional artificial values. The resulting
collection is sent to the data warehouse to retrieve a
subset of table S that includes the data required to
answer the original query along with some false
positives. Although, this method will not provide for
absolute privacy (i.e., the adversary can infer nothing
about the contents of table R), the hash/noise method
can guarantee an upper bound on the amount of
privacy loss when data is exchanged. By sacrificing a
small fraction of privacy, this method incurs

significantly less transmission costs than downloading
the contents of dw to the private database. As one
might expect, this approach has roots in information
hiding [12].

Section 2 provides a short overview of challenges
related to privacy preservation and related works are
discussed. Section 3 describes the privacy metric.
Section 4 formally presents our hash/noise approach.
Section 5 outlines a proof of concept implementation
and initial experimental results are studied. Finally,
section 6 summarizes our work and explores future
roads of research. The appendix summarizes the
notation used throughout the paper.

2. Challenges and Other Related Works

There are several challenges in privacy-preserving
data integration, ranging from defining privacy,
correctness, to efficiency. This section provides a short
summary of the most relevant of these challenges.

2.1. Defining Privacy

First, a metric is needed to measure the amount of
privacy loss that is incurred when data is exposed. In
[13], variable privacy is proposed as a method in
which some information can be revealed for some
benefit. Privacy loss is likened to a communications
channel, in which the difference between a posteriori
(i.e., after data has been revealed) and a priori (i.e.,
before data has been revealed) distributions of data
measures privacy loss. In [14], the likelihood of what
can be inferred about a query posed by the user is used
as a measure of privacy loss. In [15] and [16], a metric
for measuring the inherent uncertainty of a random
variable based on its differential entropy is used as a
measure for privacy. The common factor among all
these proposed metrics is relative information gain,
which has also been used in many privacy-preserving

applications [17], making it a likely candidate for
measuring privacy loss.

2.2. Correctness

The second challenge is producing exact and
correct answers to queries posed by users. Work in
privacy-preserving data mining [18]-[21] have focused
on changing the actual values of data items so that the
values of data items are hidden but the distribution of
the perturbed data is similar to that of the original data
distribution. However, the exact original data values
can not be accurately recovered. While this is
acceptable in data mining applications, since data
mining looks for trends and patterns, not exact values,
for data integration, the exact answers are required.

2.3. Efficiency and Privacy

The third challenge is to perform the join
operation efficiently without sacrificing much privacy.
If the join operation is partitioned into multiple
selection queries (one query for each join column
value in table R), the problem is transformed into
hiding the identity of the queries from dw while still
being able to retrieve the result of such queries from
dw. It has been shown that to completely guarantee the
privacy of the queries, the entire contents of dw should
be downloaded [22]. However, in some cases this is
not practical. If the user is willing to sacrifice a small
portion of his data privacy, the join operation can be
done without retrieving all of table S.

Commutative encryption-based approaches have
also been proposed to solve the private data integration
problem as well [23]-[25]. These approaches take
advantage of a family of encryption functions in which
the order that data item are encrypted by two different
keys does not matter. Although such an approach hides
the contents of query results from one or both parties,
it requires the exchange of both parties’ encrypted data
so that they can both mutually encrypt each others’
data. This makes such an approach expensive.

Oblivious transfer [26]-[28] allows the user to
secretly pose a query and only receive the result of the
query and nothing else. The party providing the answer
to the query does not learn the actual query. However,
under an oblivious transfer protocol, encryption and
transmission of all data items held by dw to the user
are required.

There has also been work in private information
retrieval schemes [22][29], which allow a user to
retrieve information from a database while maintaining
the privacy of his query. In these schemes, table S
would be replicated at multiple sites. Given a query,

Figure 1. General problem.

multiple queries are generated and sent to each of site
such that no site can learn the actual original query by
acting alone. The value of a record in column B of
table R is not revealed to the data warehouse.
However, many users working with sensitive data
would be unwilling to trust such a system if there is no
way to enforce non-collusion among the sites in the
system, especially if the user simply sees the
aggregation of the various sites as a black box.

2.4. Other Related Works

The proposed hash/noise method takes an
approach similar that to the one discussed in [14],
which takes advantage of collisions caused by hashes
to introduce uncertainty in the true contents of a
private database’s table. A HMAC [30] hash value is
generated for each data item in both tables each time a
query is posed. The size of the hash is varied to control
the amount of privacy loss: when the hash size is
increased, there are fewer possible collisions among
join column values, and thus less uncertainty in the
identity of a join column. Specifically, db first hashes
the values of the column B from table R to truncated
HMAC values small enough to satisfy the privacy
constraint posed by the user. Then it transmits its
hashed values and hash size to dw, where the relevant
subset of table S is identified by performing a join on
R’s hashed values with S’s hashed values (generated
by the same HMAC hash key over column B of table
S). Because a new hash with a new size is generated
for each query to vary the level of privacy, traditional
indexing mechanisms can not be used to accelerate
querying time and extra computation time is required
to compute the hash values of all data items in both
tables. As a result, the join operation becomes a very
expensive operation.

In contrast, our hash/noise method approach uses
a set of fixed hashing and artificial hash values to
control the amount of uncertainty in the identity of the
join column values in table R, thereby controlling the
level of privacy loss incurred. dw would contain an
auxiliary table having a fixed set of columns. The hash
values of join column values of table S are computed
offline and are indexed. During query time, db will
select the hash function that will yield the best
performance. Artificial hash values will be injected
into the data set communicated to dw by db, if the
selected hash function does not sufficiently satisfy the
privacy constraint. Because the hashes are known in
advance, dw can store the resulting hash values
directly in the database and does not need to
recompute them for each query. A candidate set of
tuples that belong to the result is returned by the dw

when it receives the hashed values. The candidate set
is then filtered by db to retrieve the final result.

Furthermore, privacy control by hash truncation
alone as suggested by [14] is very coarse. For
example, suppose that a 16-bit hash does not satisfy
the privacy constraint given a table R, so a 15-bit hash
was selected instead. However, the 15-bit hash doubles
the collision rate of the 16-bit hash, doubling the size
of the candidate set for the join result. Whereas, the
same 16-bit hash with some additional artificial hash
values could have satisfied the same privacy constraint
and yield far fewer records in the candidate set.

 There has also been work in using Bloom filters
to make joins in a distributed database system more
efficient and private [31]-[33]. Like Bloom filters, our
approach makes use of the uncertainty introduced by
the collisions induced by hashing. However, we
augment the simple hashing approach by introducing
artificial noise values to control the level of privacy
desired by the user in exchange for efficiency.
Furthermore, Bloom filters will not allow the use of
traditional indexing mechanism to speed up querying.
If a Bloom filter was used to summarize the join
column of table R and transmitted to dw, dw would
have to apply the Bloom filter to each join column
value in table S.

Work in querying remote encrypted data [34]-[35]
is also related to private data integration. However,
when querying remote encrypted data, it is assumed
that the encrypted data is owned by the user but exists
on a public server. In the problem we are addressing,
the data on the public server is generally publicly
available and is not owned by any one user.

3. Privacy Metric

For our work, we use relative information gain as
a basis for a metric to measure privacy loss when data
is exchanged. The remainder of this section defines
this metric and explains our motivation for selecting it.

3.1. Entropy and Relative Information Gain

Entropy and relative information gain were
initially proposed in [30]. Entropy is the amount of
uncertainty in a random variable X. If the random
variable X can take on a set of finite values x1,x2,…xn,
then its entropy is defined as:

 ∑ =
==−= n

i ii xXPxXPXH
1 2)(log)()((1)

The conditional entropy H(X|Y) is the amount of
uncertainty in X after Y has been observed. Relative
information gain, or the fraction of information
revealed by Y about X, is defined as:

)(

)|()(
);(

XH

YXHXH
YXRIG

−
= (2)

Privacy loss can be thought as the amount of
information gained by an adversary about the contents
of set of sensitive data items, which in this case are the
contents of column B of table R.

3.2. Absolute Privacy Loss

If dw (i.e., the adversary) has no knowledge about
the distribution of column B of table R, then it can only
assume that each value that belongs to the domain U

are equally likely to occur. Let R
~

 be a random
variable describing the column B values (the only
information revealed in a semi-join by db), of a tuple
in table R. Absolute privacy loss pabs is defined as the

relative information gain on R
~

 when any data set N is
revealed to dw by db. By doing a simple substitution
with equation 2, absolute privacy loss is:

||log

)|
~

(||log

)
~

(

)|
~

()
~

(

2

2

U

NRHU

RH

NRHRH
pabs

−
=−= (3)

3.3. Relative Privacy Loss

It is possible that an adversary will make use of
any available information to infer the contents of table
R, in particular the contents of table S, since it is
publicly available. Thus, relative privacy loss is
defined as:

)|

~
(

)|
~

()|
~

(

SRH

NRHSRH
prel

−= (4)

In this case, the adversary uses the distribution of
values in column B of table S as a hint to the possible
distribution of values in column B of table R.

)|
~

(SRH (the uncertainty of the join column values of

a tuple in table R given the contents of table S) can be
found by directly applying equation 2 on the
distribution of values in column B of table S. Because
this metric captures the information gained by an
adversary with respect to its current knowledge in
contrast to absolute privacy loss, it is the metric we
have chosen for evaluation of our approach.

4. Privacy-Preserving Distributed Join

Figure 2 outlines how to find R
⋈

BS when a
privacy constraint exists. The first step projects
column B from table R and applies a hashing function
h to each value in column B, yielding table h(R) with
column h(B). Step 2 will generate artificial hash
values, yielding table n. In step 3, table N is derived

from the union of n and h(R). Table N is then shipped
to the data warehouse in step 4. At the data warehouse
in step 5, table S and N are joined on column h(B),
yielding table F. Table F is the set of possible tuples
from dw that will belong to the final result of the join
operation. Then table F is shipped to db in step 6. The
final result, Goal, is found by filtering out the false
positives in F by joining tables R and F.

4.1. Privacy Constraint Satisfaction

Because different hash functions have various
(range) sizes, they yield different collision rates. Large
hash functions tend to yield low collision rates;
whereas, small hash functions tend to yield high
collision rates. A hash function h with a high collision
rate introduces large amounts of uncertainty about x
when h(x) is known. This uncertainty is used to mask
the true identity of a join column value in table R.
Hash functions also hide clusters of data by hashing
clustered values to uniformly-distributed hashed
values. A hash function with a high collision rate has
the side effect of “compressing” the values of column
B from table R since a single hash value can be used to
represent multiple actual values. However, if the
collision rate is too high, many false positives will
occur in F due to the high number of collisions,
yielding high unnecessary transmission costs. Thus, it
is important to use an appropriately sized hashing
function to yield an acceptable level of performance
while providing enough uncertainty to meet the
privacy constraint.

It is computationally expensive to dynamically
compute the hash values resulting from a new hash

Figure 2. Privacy-preserving distributed join.

function with a different size each time a query is
posed on a large data warehouse table. Furthermore,
dynamic generation of values prevents indexing
mechanism from being used to during the join
operation in step 5. Our alternative approach is to
predefine a set of m hash functions h1,h2,…,hm with m
different sizes to be used to precompute m values for
each record in table S on column B. The result of each
of these hash functions on column B are stored
explicitly (in m different columns) and indexed.

When the user wishes to perform a join on his
private table R and the public table S, he requires that
the privacy loss incurred with respect to the contents of
table S to not exceed prel. In other words:

)|

~
(

)|
~

()|
~

(

SRH

NRHSRH
prel

−≥ (5)

Assuming a uniformly-distributing hash function,
the number of real values that hash to the same hash

value is estimated to be
||

||

H

U
, where |U| is the size of

the domain of possible values for column B (the
universe) and |H| is the range size of hash function h.
H is the set of possible values in the range of h. For

any given hash value,
||

||

H

U
 possible values could have

been used as input into the hash function and could
have belonged to table R. For a set of |N| hash values,

there is a total of
||

||
||

H

U
N possible values that data

items in column B of table R can take on with equal

probability. Thus,)|
~

(NRH is estimated as:

=

||

||
||log)|

~
(2 H

U
NNRH (6)

By combining equations 5 and 6, the constraint on |N|
for a given prel is found to be:

)
~

|
~

()1(2
||

||
|| SRHprel

U

H
N −≥ (7)

Applying equation 7 to each hash function, the
minimum number of hash values |r1|,|r2|,…,|rm| for all
m available hash functions on dw can be found.

We can estimate the number of unique hash values
generated by hashing each tuple in R with hi
analogously to [14] as:

 ||
||

1
11|)(|

||

i

R

i
esti H

H
Rh

−−= (8)

Then the actual size of the hash value set Ni that db
would send to dw, if hash function hi was selected, is:
)|)(|,max(|| estiii RhrN = (9)

Note that |Ni| ≤ |hi (R)|, so it may be necessary to
add artificial hash values to the set N sent by db to dw
in addition to hi(R). This can be done by randomly
selecting |Ni| - |hi(R)| hash values that belong to the
range of hi. The set of artificial hash values is denoted
as ni, where iii nRhN ∪=)(.

4.2. Performance Estimation

To select the appropriate hash function for the
data exchange, the transmission cost normalized with
respect to the brute-force method (i.e., downloading
table S from dw to db) costi can be estimated. It is
assumed that transmissions costs will dominate the
execution costs of the overall join operation since the
system will be operating over a limited
communications link and search time is kept low with
the use of indexes.

If the brute-force method was used, ct|S| time
units are required to transmit |S| records from dw to db
where ct is the cost associated with transmitting a
single record returned by dw in bytes. The cost of the
hash/noise method can be estimated to be the sum of
the cost of transmitting hash values from db to dw and
the cost of transmitting the set of candidate tuples F
returned by dw to db. The cost of sending the hash
values is ch|Ni| time units for a hash function hi, where
ch is the cost associated with transmitting a single hash
value. The cost of the tuples returned by dw to db after
the hash values have been sent is ct|F|. Thus, the
transmission cost normalized with respect to the brute-
force method is summarized as:

||

||

||

||

||

||||

Sc

Nc

S

F
cost

Sc

FcNc
cost

t

ih
i

t

tih
i

+=

+
=

 (10)

Equation 10 shows that as the cost-ratio ch/ct
approaches zero, the cost of sending hash values

||

||

Sc

Nc

t

ih becomes small. As |F| approaches |S|, the

performance of the hash/noise method is similar to that
of the brute-force method; whereas, when |F| << |S|,
we see significant performance improvement over the
brute method. The goal is to minimize this
performance metric.

Since |F| is not known until query time, |F| can be
estimated to be the average number of tuples returned
by dw given the characteristics of the hash function
and the contents of dw. It is found that on average for a
given hash value, the number of values in column B

that will collide to the some hash value is
||

||

iH

S
 for a

hash function hi. Consequently, the average number of

tuples returned by dw to db is ||
||

||
i

i
N

H

S
. The

normalized transmission cost costi for a hash function
hi is estimated to be:

||

||
||
||

||

Sc

N
H

S
cNc

cost
t

i
i

tih

i

+
= (11)

The hash function hi (with an associated Ni found
with equation 9) that yields the lowest normalized
transmission cost according to equation 11 is selected
as the hash function for the data exchange and is
denoted by h. The set h(R) is computed with hash
function h. The number of hash values to be sent using
h, denoted by |N| is the maximum of the corresponding
|Ni| and |hi(R)|.

5. Implementation and Results

A preliminary implementation was done in Java
with MySQL [37] via MySQL’s JDBC connector [38].
Borrowing a technique from [14], eight hash functions
were created by simply truncating the result of a well
known hash function, in this case MD5 [39]. Eight sets
of hash values were generated for each B column value
by truncating the result of the MD5 hash of a column B
value to various bit sizes ranging from 8 to 16 bits.
The hash value sets were stored and indexed in dw

along with their respective S table.)|
~

(SRH was

computed offline and stored for each S table.
Three sets of data were used for three instances of

table S. The first two were each comprised of 2.5
million synthetically generated tuples. The values of
column B for table S were generated with a uniform
distribution of values from 0 to 99,999 for the first set.
The second set’s column B values were generated with
a Gaussian distribution of values from 0 to 99,999 with
a mean of 50,000 and a standard deviation of 1000.
The third set of data was the “alignment block in rat
chain of chromosome 10” table, taken from the UCSC
Genome Browser Project [40]. The genome data set
contains approximately 2.4 million records and was
biased towards low join column values.

The size of the domain U for the uniformly and
Gaussian-distributed join column values was 100,000.
There were approximately 123,598 different values for
the join column in the genome data set, so the size of
domain U for join column values was approximated to
be 217. Unless otherwise specified, the cost-ratio ch/ct

was ½ (i.e., the cost of transmitting of a hash value is
half the cost of transmitting a record from table S).

For each experiment, the R tables were generated
randomly. The R tables to be joined with a uniformly
or a Gaussian-distributed table S were generated by
randomly selecting a value for column B from the
range of 0 to 99,999. The R tables to be joined with
the genome data were generated by randomly selecting
tuples from the “summary information about chain of
rat” table (also available from [40]). For each data
point plotted, five R tables were randomly generated,
each of which was joined with table S using the
hash/noise method fives times. The maximum and
minimum observed values of each studied parameter
were ignored, and the rest were averaged. They are
shown in the following graphs.

5.1. Execution Time Analysis

To begin the execution time analysis, the size of
table R in relation to the size of the set of possible key
values U (|R|/|U|) is varied and the required relative
privacy loss is to not exceed 0.01. Figure 3 shows how
execution time varies as |R|/|U| changes. Figure 4
shows how the size of the transmitted sets |N| and |F|
varies as |R|/|U| changes. For each of the execution
time tests, the transmission cost of transmitting a hash
value was equivalent to transmitting a 4-byte integer,
and the cost of transmitting a tuple from S was
equivalent to transmitting two 4-byte integers.

For a Gaussian distribution and genome data
distributions of table S, execution time increases
linearly as |R|/|U| increases. Also the sizes of the set N
and set F behave similarly as the execution time curve.
Thus, the transmission of the two intermediary sets
makes up a significant portion of the execution time
for these two data distributions.

Figure 3. Execution times for variable |R|/|U|.

Target prel = 0.01 and ch/ct = ½.

For a uniform distribution of table S, the execution
time behaves as a step function, transitioning when
|R|/|U| = 0.6. Figure 4 shows that |N| increases along
with the execution time curve; whereas, |F| remains
relatively constant. Thus, the transmission of set N (in
contrast to both N and F as in the Gaussian and
genome data distributions) makes up a significant
portion of the execution time. As shown in a later
graph in Figure 8, when |R|/|U| transitions from 0.6 to
0.7, the system experiences the largest increase in hash
size |H|, resulting in far fewer collisions; and,
consequently many more hash values are sent to dw to
meet the privacy constraint.

Comparing the behavior of the various
distributions, the execution time of the distributed join
operation is directly related to the size of tables R, N,
and F for the Gaussian data distribution and the
genome data distribution. However, for a uniform
distribution, the execution time is generally
independent of |R|/|U|, except when there is a large
transition in hash values used, because the
transmission of noise and false-positives dominate the

cost. From this figure, it can also be seen that the
execution times for join operations operating over the
genome data distribution are lower than for the
Gaussian distribution, which are usually lower than for
the uniform distribution. Thus, less uniform
distributions will usually result in better execution
times because they are more biased and thus will have
less entropy. Uniform distributions will have the most
entropy of any distribution, requiring either far more
hash values or far more false positives to be returned
by dw to satisfy the privacy constraint.

In the second set of execution time analyses,
|R/|U| is fixed to 0.1 and the maximum privacy loss, or
the target relative privacy loss prel, is varied. Figure 5
shows how execution times vary as the target prel

changes. Figure 6 shows how |N| and |F| vary as the
target prel changes in the second graph. Intuitively, as
the privacy constraint is relaxed, execution times for
both the Gaussian and uniform data distributions
decrease since fewer hash values are needed to satisfy
the privacy constraint. For any join operation whose
target prel is greater than 0.21, the execution times, |N|,
and |F| remain constant. In such cases, |h(R)| is large
enough to satisfy the privacy constraint without any
noise. Thus, there is very little performance gain by
increasing the target relative privacy loss greater than
21% for private tables containing only 10% of the total
possible keys.

Figure 5 also shows that the execution time of the
genome data set remains relatively constant, with
minor variations in execution times due to the
randomness of data items in set R and consequently the
high randomness of data items in set F. Furthermore,
|N| remains constant regardless of the target privacy;
and consequently, only the varying sizes of table F
contribute to the variation in execution times, which is
determined by the random selection of tuples in table
R. This is shown in the second graph of Figure 6. The

Figure 4. Set sizes |N| and |F| for variable |R|/|U|. Target prel = 0.01 and ch/ct = ½.

Figure 5. Execution times for variable target prel.

|R|/|U| = 0.1 and ch/ct = ½.

variance in execution times is more than that of the
other distributions because the data in the genome data
set is much less uniformly distributed than the other
two distributions.

In summary, when target prel is low, there is more
variation in execution times for the Gaussian and
uniform distributions. In the high target privacy range,
there is little or no change in execution times as the
target privacy is increased. In other words, the
hash/noise method has a more dramatic effect when
the target prel is low.

5.2. Absolute Privacy Loss Analysis

Figure 7 shows how absolute privacy loss varies
as |R| changes and the target prel is fixed at 0.01. For
the uniform distribution, the absolute privacy loss is
kept very low and close to the target prel of 0.01 since

satisfying the relative privacy loss constraint for a
uniform distribution is almost identical to satisfying an
absolute privacy constraint of the same magnitude.
However, for the Gaussian and genome data
distributions, the absolute privacy loss differs greatly
from the target relative prel, because far less effort is
required to satisfy the relative privacy loss constraint
than that required to satisfy an absolute privacy loss
constraint of equal magnitude due to less uniformity in
these distributions. For non-uniform distributions,
achieving low absolute privacy loss would be much
more expensive than achieving low relative absolute
privacy loss; whereas, the cost for achieving both for a
uniform distribution would be relatively the same.

Figure 7 also shows that as |R|/|U| increases,
absolute privacy loss decreases. In general, as |R|/|U|
increases, the data revealed by db to dw increases. As
a result, the pool of possible values that an adversary
can use to infer the actual values of column B in table
R increases as well, resulting in far greater uncertainty
about the actual value of a column B value in table R.

5.3. Hash Selection Analysis

Figure 8 shows that the size of the selected hash
function that yields the lowest transmission cost
increases as |R|/|U| increases, for all distributions. The
graphs show that as the uniformity of table S increases,
a wider range of hash values are required to account
for any variations in sizes of table R provided by a
user. For the uniform distribution, hash sizes ranging
from 10-bits to 16-bits are required, depending on the
size of |R|. For the Gaussian distribution, hash sizes
ranging from 12-bits to 16-bits are required. Finally,
for the genome data set, hash sizes ranging from 14-
bits to 16-bits are needed. This experiment shows the
necessary hash sizes that need to be precomputed and
stored in dw for the various S table distributions.

Figure 6. Set sizes |N| and |F| for variable target prel. |R|/|U| = 0.1 and ch/ct = ½.

Figure 7. Varying absolute privacy. Target prel =
0.01 and ch/ct = ½.

5.4. Transmission Cost Analysis

In this set of analyses, the transmission costs of
the hash/noise method in relation to the brute-force are
studied.

The observed normalized transmission cost based
on equation 10 using the observed |F| is compared to
the estimated normalized transmission cost based on
equation 11. The first graph of Figure 9 shows that the
hash/noise method works well when |R|/|U| is very
low, and especially well when the distribution of key
values in table S is very biased. For uniform
distributions of table S and a target prel of 0.01, the
transmission costs of the hash/noise method was 90%
or more than the transmission costs of the brute-force
method, costing almost as much as the brute-force
method. For a Gaussian-distributed data set, the
transmission costs ranged from 35% to 95% of the

brute-force method, depending on |R|/|U|. For the
skewed genome data set, the transmission cost varied
significantly depending on the size of |R|/|U|.

The second graph shows that transmission cost
steeply decreases as the target prel increases from 0.01
to 0.2 for both Gaussian and uniform distributions. For
any target prel greater than 0.2, transmission costs are
25% of that of the brute-force method, for all
distributions. The general behavior of steeply
decreasing and flattening out was predicted by the
estimated normalized transmission cost curves, but the
actual transmission costs were not accurately
estimated. For the less uniform genome data, the
transmission costs remain relatively constant with an
average of 25% of that of the brute-force method, for
all target relative prel values and when |R|/|U| is 0.1.
Like for the other distributions, the general behavior of
the observed transmission cost curve was predicted by
the estimated transmission cost curves, but the actual
transmission costs were poorly predicted.

Figure 10 compares the attained normalized
transmission costs of the hash/noise method with the
costs of simple semi-joins (i.e., no privacy constraints
enforced). The graph shows that |R|/|U| is directly
proportional to what the cost of the semi-join would
be. The graph summarizes how much more the
hash/noise method costs to satisfy a maximum relative
privacy loss of 0.01 in comparison to a semi-join,
which has no privacy. Using the hash/noise method, it
is very expensive to achieve a maximum relative
privacy loss of 0.01 when the distribution of the
column B values of the S table is uniform, and
especially when |R|/|U| is very low. On the other hand,
when the S table is non-uniform, and especially when
|R|/|U| is very high, there is much less additional cost

Figure 8. Hash sizes for variable |R|/|U|. Target

prel = 0.01 and ch/ct = ½.

 (a) (b)
Figure 9. Varying normalized transmission costs wit h respect to the brute-force method. (a) Target

prel = 0.01 and sh/st = ½. (b) |R|/|U| = 0.1 and ch/ct = ½.

for the added privacy that the hash/noise method
provides for in comparison to a simple semi-join,
which provides for no privacy.

5.5. Cost-Ratio Analysis

Finally, the effect of the cost-ratio, or the ratio
between the transmission costs of sending a hash-value
and the transmission costs of sending a tuple, is
examined. In this set of experiments, the target prel was
fixed at 0.01 and |R|/|U| was fixed at 0.1. Figure 11
shows that the cost-ratio has very little effect on the
overall performance of the system because the number
of tuples in set F makes the cost of transmitting set F
the dominating cost of the hash/noise method,
regardless of the cost-ratio between sending hash
values and tuples from set F.

6. Future Work

From our initial results presented, several future
research directions can be pursued. There is a need to
develop a more accurate estimation of performance.
Our current estimation uses the average number of
collisions to estimate the number of tuples to be
returned by dw, which works well for uniformly-
distributed data but poorly for non-uniformly
distributed data. In future research, several additional
features, such as the distribution of table S, should be
incorporated into a new estimate.

This work also needs to be expanded to infinite
domains (e.g., people’s names), and specifically to
develop a privacy loss metric reflect privacy loss in

these domains. The current privacy loss metric
operates on finite and discrete domains. If infinite
domains are used, our method may be too conservative
since there are an infinite number of actual values that
may hash to a given hash value

Our method only protects the privacy of data over
a single query. However, it may be possible for
adversaries to make inferences over multiple queries.
Thus, some mechanism may be needed to prevent such
inferences from being made. Perhaps, some type of
caching technique can be used to avoid exposing the
same private data set more than once. In such a
technique, the data warehouse would operate on
cached hashed values (including artificial hash values)
rather than on new sets of hashed values for the same
set of private data provided by db, if a new table S is to
be joined on a previously joined table R in a
subsequent query.

Another future research direction is the use of a
Bloom filter to reduce the size of the set R used by the
hash/noise method. The data warehouse would send to
the private database a Bloom filter based on the
contents of table S before the hash/noise process
described here occurs. Using this filter, the private
database can remove data items that do not pass
through the Bloom filter from table R; thereby,
reducing the exposure of real data items that would not
have been in the final result. This would also reduce
|R|/|U|, which has been shown to yield better
performance when low. However, this technique
would require that all artificial hash values would have
to be generated in such a way that a value that hashes
to an artificial hash value would have to pass through
the Bloom filter. Otherwise, the data warehouse can
easily determine the artificial hash values from set N.

Figure 10. Attained normalized transmission
costs of join with privacy constraints and join
without privacy constraints. Target prel = 0.01
and ch/ct = ½. Cost of transmitting the key of a
record from db is half the cost of transmitting

a tuple from dw.

Figure 11. Varying normalized transmission
costs with variable cost-ratio. Target prel =

0.01 and |R|/|U| = 0.1.

How to efficiently generate artificial hash values with
the Bloom filter constraint remains an open question.

Finally, the hash/noise technique proposed
currently only works for the equijoin operation. There
may be a need to develop methods to protect the
privacy of data that are processed by general joins.

7. Conclusion

Three challenges in solving the private data
integration problem were presented: (1) privacy, (2)
correctness, and (3) efficiency. The use of relative
information gain addresses the first challenge. To
address the second and third challenges, a correct and
efficient technique was described to protect the
privacy of private data of small size when it is to be
integrated with a public database of much greater size.
By making use of predefined hash functions and noise
injection to satisfy any privacy constraints that a user
may pose, traditional indexing mechanisms can be
used, making the total cost of a distributed join
dominated mostly by transmission costs rather than by
search and computational costs.

The hash/noise technique works better for less
uniform public data sets than for more uniform data
sets stored at the public data warehouse. Furthermore,
uniform data distributions require a wider range of
hash functions to be predefined than less uniform data
distributions.

In comparison to other related approaches, the
hash/noise technique does not assume non-collusion,
does not require downloading the entire data
warehouse table, leverages existing indexing
mechanisms, and provides for finer-grain control of
privacy than simple hashing. The promising initial
results presented show the merit of using hashing and
noise injection to solve the problem of efficiently
integrating small amounts private data with large
amounts of public data.

8. Acknowledgements

This work was performed under the auspices of
the U.S. Department of Energy by the University of
California Lawrence Livermore National Laboratory
under contract no. W-7405-Eng-48. The authors would
like to thank Tina Eliassi-Rad, David Buttler, and
Roderick Son for their valuable input.

9. References

[1] S. Phillippi and J. Kohler, “Using XML Technology for
the Ontology-Based Semantic Integration of Life

Science Databases,” IEEE Transactions on Information
Technology in Biomedicine, vol. 8, no. 2, pp. 154-160,
June 2004.

[2] A. Tomasic, L. Raschid, and P. Valduriez, “Scaling
Access to Heterogeneous Data Sources with DISCO,”
IEEE Transactions on Knowledge and Data
Engineering, vol. 16, no. 5, pp. 808-823, Sept/Oct
1998.

[3] S.B. Davidson, et al, “Transforming and Integrating
Biomedical Data using Kleisli: A Perspective,” ACM
SIGBIO Newsletter, vol. 19, no. 2, pp. 8-13, 1999.

[4] Z. Lacroix, O. Boucelma, and M. Essid, “The
Biological Integration System,” in Proceedings of
WIDM ’03, pp. 45-49, New Orleans, LA, Nov. 7-8,
2003.

[5] M. Alvarez, et al, “FINDER: A Mediator System for
Structured and Semi-Structured Data Integration,” in
Proceedings of the 13th International Workshop on
Database and Expert Systems Applications (DEXA
’02), pp. 847, Aix-en-Provence, France, Sept. 2-6,
2002.

[6] L.M. Haas, et al “DiscoveryLink: A System for
Integrated Access to Life Sciences Data Sources,” IBM
Systems Journal, vol. 40, no. 2, pp. 489-511, 2001.

[7] B. Thuraisingham, “Data Mining, National Security,
Privacy and Civil Liberties,” ACM Special Interest
Group on Knowledge Discovery in Data and Data
Mining (SIGKDD) Explorations Newsletter, vol. 4, no.
2, pp. 1-5, June 2002.

[8] M.S. Olivier, “Database Privacy: Balancing
Confidentiality, Integrity and Availability,” ACM
Special Interest Group on Knowledge Discovery in
Data and Data Mining (SIGKDD) Explorations
Newsletter, vol. 4, no. 2, pp. 20-27, June 2002.

[9] R. Agrawal et al, “ Hippocratic Databases,” in
Proceedings of the 28th Very Large Databases (VLDB)
Conference, Hong Kong, China, 2002.

[10] T.D. Sterling and J.J. Weinkam, “Sharing Scientific
Data,” Communications of the ACM, vol. 33, no. 8, pp.
113-119, Aug. 1990.

[11] P.A. Bernstein and D.W. Chiu, “Using Semi-Joins to
Solve Relational Queries,” Journal of the ACM, vol.
28, no. 1, pp. 25-40, Jan. 1981.

[12] F.A.P. Petiticolas, R.J. Anderson, and M.G. Kuhn,
“Information Hiding – a Survey,” in Proceedings of the
IEEE, vol. 87, no. 7, p. 1062-1078, July 1999.

[13] P.L. Vora, “Towards a Theory of Variable Privacy,” in
review, May 7, 2003.

[14] G. Schadow, S.J. Grannis, and C.J. McDonald,
“Privacy-Preserving Distributed Queries for a Clinical
Case Research Network,” in Proceedings of IEEE
International Conference on Data Mining Workshop on
Privacy, Security, and Data Mining, Maebashi City,
Japan, 2002.

[15] D. Agrawal and C.C. Aggarwal, “On the Design and
Quantification of Privacy Preserving Data Mining
Algorithms,” in Proceedings of Principles of Database
Systems (PODS) 2001, pp. 247-255, Santa Barbara,
CA, 2001.

[16] C. Clifton, M. Kantarcioglu, and J. Vaidya, “Defining

Privacy for Data Mining,” in Proceedings of the
National Science Foundation Workshop on Next
Generation Data Mining, Nov. 1-3, 2002, Baltimore,
MD

[17] C. Clifton, et al, “Privacy-Preserving Data Integration
and Sharing,” in Proceedings of Data Mining and
Knowledge Discovery (DMKD) ’04, Paris, France, June
13, 2004.

[18] J. Vaidya and C. Clifton, “Privacy Preserving
Association Rule Mining in Vertically Partitioned
Data,” in Proceedings of ACM Special Interest Group
on Knowledge Discovery in Data and Data Mining
(SIGKDD) International Conference on Knowledge
Discovery and Data Mining (KDD ’02), Edmonton,
Alberta, Canada, 2002.

[19] S. Agrawal, V. Krishnan, and J. Haritsa, “On
Addressing Efficiency Concerns in Privacy-Preserving
Data Mining,” in Proceedings of the International
Conference on Database Systems for Advanced
Applications (DAFSAA) 2004, pp. 113-114, Jeju Island,
Korea, Mar. 17-19, 2004.

[20] W. Du and Z. Zhan, “Using Randomized Response
Techniques for Privacy-Preserving Data Mining,” in
Proceedings of ACM Special Interest Group on
Knowledge Discovery in Data and Data Mining
(SIGKDD) International Conference on Knowledge
Discovery and Data Mining (KDD ’03), Aug. 24-27,
2003.

[21] R. Agrawal and R. Srikant, “Privacy-Preserving Data
Mining,” in Proceedings of the 2000 ACM
International Conference on Management
of Data, pp. 439-450, Dallas, TX, 2000.

[22] B. Chor et al, “Private Information Retrieval,” Journal
of the ACM, pp. 965-982, vol. 45, no. 6, Nov. 1998.

[23] R. Agrawal, A. Evfimievski, and R. Srikant,
“Information Sharing Across Private Databases,” in
Proceedings of the Special Interest Group on
Management of Data (SIGMOD) 2003, pp. 86-97, San
Diego, CA, June 9-12, 2003.

[24] M. Kantarcioglu and C. Clifton, “Assuring Privacy
when Big Brother is Watching,” in Proceedings of
Data Mining and Knowledge Discovery (DMKD) ’03,
San Diego, CA, June 13, 2004.

[25] C. Clifton, et al, “Tools for Privacy Preserving
Distributed Data Mining, ACM Special Interest Group
on Knowledge Discovery in Data and Data Mining
(SIGKDD) Explorations Newsletter, vol. 4, no 2, pp.
28-34, Dec. 2002.

[26] M. Naor and B. Pinkas, “Efficient Oblivious Transfer
Protocols,” in Proceedings of Society of Industrial and
Applied Mathematics (SIAM) Symposium on Discrete
Algorithms, Washington, DC, Jan. 7-9, 2001.

[27] M. Bellare and S. Micali, “Non-Interactive Oblivious
Transfer and Applications,” in Proceedings on
Advances in Cryptology, pp. 547-557, Santa Barbara,
CA, 1989.

[28] M.J. Freedman, K. Nissim, and B. Pinkas, “Efficient
Private Matching and Set Intersection,” in Proceedings
of Eurocrpyt 2004, Interlaken, Switzerland, May 2-6,
2004.

[29] Y. Gertner et al, “Protecting Data Privacy in Private
Information Retrieval Schemes,” in Proceedings of the
13th Annual ACM Symposium on Theory of Computing,
pp. 151-160, Dallas, TX, 1998.

[30] M. Bellare, R. Canetti, and H. Krawczyk, “Message
Authentication using Hash Functions – The HMAC
Construction,” RSA Laboratories’ CryptoBytes, vol. 2,
no. 1, Spring 1996.

[31] J.K. Mullin, “Optimal Semijoins for Distributed
Database Sytems,” IEEE Transactions on Software
Engineering, vol. 16, no. 5, pp. 558-560, May 1990.

[32] J.M. Morrissey and W.K. Osborn, “Distributed Query
Optimization Using Reduction Filters,” in Proceedings
of IEEE Canadian Conference on Electrical and
Computer Engineering, vol. 2, pp. 707-710, May 24-28
1998.

[33] S. Bellovin and W. R. Cheswick, “Privacy-Enhanced
Searches Using Encrypted Bloom Filters,” in
Proceedings of DIMACS/Portia Workshop on Privacy-
Preserving Data Mining, Piscataway, NJ, Mar. 15-16,
2004.

[34] M. Kantarcioglu and C. Clifton, “Security Issues in
Querying Encrypted Data,” Purdue University
Department of Computer Sciences Technical Report
CSD TR# 04-013, Mar. 2004.

[35] Y. Chang and M. Mitzenmacher, “Privacy Preserving
Keyword Searches on Remote Encrypted Data,” in
Proceedings of DIMACS/Portia Workshop on Privacy-
Preserving Data Mining, Piscataway, NJ, Mar. 15-16,
2004.

[36] C.E. Shannon, “A Mathematical Theory of
Communication,” Bell System Technical Journal, vol.
27, pp. 379-423 and 623-656, July and Oct. 1948.

[37] MySQL AB, “MySQL: The World’s Most Popular
Open Source Database,” Aug. 2004;
http://dev.mysql.com/

[38] MySQL AB, “MySQL Connector/J Documentation,”
Aug. 2004;
http://dev.mysql.com/doc/connector/j/en/index.html

[39] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone,
Handbook of Applied Cryptography, CRC Press, 1997,
pp. 347.

[40] UCSC Genome Bioinformatics, “UCSC Genome
Browser Home,” Aug. 2004; http://genome.ucsc.edu/

Appendix

Table 1. Notation used.

Notation Meaning

R Private database table

S Public data warehouse table

B Join column

U Domain of column B values

Goal Final result of join operation

h Hash function

|h(R)|est Estimated size of the set of hash values
generated by a hash function h on table R

h(R) Set of hash values generated by a hash
function h on table R

H Range of hash function h

n Set of artificial hash values

N Set sent to dw by db, which is the union
of n and h(R)

F Set containing the containing candidate
tuples that may belong to Goal

|V| Number of items in some set V

db Private database

dw Public data warehouse

H(X) Entropy of random variable X

RIG(X;Y) Relative information gain over random
variable X when Y is observed.

R
~

 Random variable describing the value of
column B of a tuple in table R

cost Transmission cost normalized with
respect to the brute-force method

pabs Absolute privacy loss

prel Relative privacy loss with respect to the
contents of table S

ct Cost associated with transmitting a tuple
returned by dw

ch Cost associated with transmitting a hash
value

