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Abstract 

Current solutions to integrating private data with 
public data have provided useful privacy metrics, such 
as relative information gain, that can be used to 
evaluate alternative approaches. Unfortunately, they 
have not addressed critical performance issues, 
especially when the public database is very large. The 
use of hashes and noise yields better performance than 
existing techniques while still making it difficult for 
unauthorized entities to distinguish which data items 
truly exist in the private database. As we show here, 
leveraging the uncertainty introduced by collisions 
caused by hashing and the injection of noise, we 
present a technique for performing a relational join 
operation between a massive public table and a 
relatively smaller private one.  

1. Introduction 

Data is often generated or collected by various 
parties, and the need to integrate the resulting disparate 
data sources has been addressed by the research 
community [1]-[6]. Although the heterogeneity of the 
schemas has been addressed, most data integration 
approaches have not yet efficiently addressed the 
privacy requirements imposed by data sources.  

Legal and social circumstances have made data 
privacy a significant issue [7]-[8], resulting in the need 
for Hippocratic databases (i.e., “database that include 
privacy as a central concern”) [9], particularly in 
sharing scientific or medical data. Without strong 
privacy guarantees, often scientists refuse to share data 
with other scientists for reasons, such as 
subject/patient confidentiality, proprietary/sensitive 
data restrictions, competition, and potential conflict 
and disagreement [10]. 

When sharing scientific data, privacy quickly 
becomes an issue. Suppose that a scientist wishes to 
perform a query across a table in his private database 
and a table in a public data warehouse in the most 

efficient manner possible (shown in Figure 1). 
Ignoring privacy restrictions, the problem is reduced to 
a distributed database problem that can be solved by 
shipping the scientist’s table to the warehouse and 
performing the join at the warehouse. However, if the 
scientist’s data set is proprietary, it cannot be sent 
verbatim to the warehouse. The naive solution is for 
the scientist to download the entire public table to his 
local machine and perform the query there. But to do 
so would be prohibitively expensive if the public table 
is very large or the communications link is limited.  

Assuming that schema reconciliation has already 
been done, the problem can be formalized as the 
following. Table ),( BAR =  from a small private 

database db is to be joined with table ),( CBS =  from 

a large data warehouse dw on column B, yielding the 
desired table Goal = R

⋈
BS. Table R is private and the 

identity of the data items in R can not be known by any 
other party other than the owner of db. Table S is 
publicly available and accessible.  

It is assumed that the system operates in a semi-
honest model, where both parties will behave 
according to their prescribed role in any given 
protocol. However, there are no restrictions on the use 
of information that has been learned during the data 
exchange after the protocol is completed. dw is treated 
as the adversary. To describe the level of privacy 
preserved, relative information gain is used. 

To address this problem, we augment the well-
known semi-join framework [11], “hiding” the actual 
values of the join column of table R by hashing them 
and including additional artificial values. The resulting 
collection is sent to the data warehouse to retrieve a 
subset of table S that includes the data required to 
answer the original query along with some false 
positives. Although, this method will not provide for 
absolute privacy (i.e., the adversary can infer nothing 
about the contents of table R), the hash/noise method 
can guarantee an upper bound on the amount of 
privacy loss when data is exchanged. By sacrificing a 
small fraction of privacy, this method incurs 



significantly less transmission costs than downloading 
the contents of dw to the private database. As one 
might expect, this approach has roots in information 
hiding [12].  

Section 2 provides a short overview of challenges 
related to privacy preservation and related works are 
discussed. Section 3 describes the privacy metric. 
Section 4 formally presents our hash/noise approach. 
Section 5 outlines a proof of concept implementation 
and initial experimental results are studied. Finally, 
section 6 summarizes our work and explores future 
roads of research. The appendix summarizes the 
notation used throughout the paper. 

2. Challenges and Other Related Works 

There are several challenges in privacy-preserving 
data integration, ranging from defining privacy, 
correctness, to efficiency. This section provides a short 
summary of the most relevant of these challenges. 

2.1. Defining Privacy 

First, a metric is needed to measure the amount of 
privacy loss that is incurred when data is exposed. In 
[13], variable privacy is proposed as a method in 
which some information can be revealed for some 
benefit. Privacy loss is likened to a communications 
channel, in which the difference between a posteriori 
(i.e., after data has been revealed) and a priori (i.e., 
before data has been revealed) distributions of data 
measures privacy loss. In [14], the likelihood of what 
can be inferred about a query posed by the user is used 
as a measure of privacy loss. In [15] and [16], a metric 
for measuring the inherent uncertainty of a random 
variable based on its differential entropy is used as a 
measure for privacy. The common factor among all 
these proposed metrics is relative information gain, 
which has also been used in many privacy-preserving 

applications [17], making it a likely candidate for 
measuring privacy loss.  

2.2. Correctness 

The second challenge is producing exact and 
correct answers to queries posed by users. Work in 
privacy-preserving data mining [18]-[21] have focused 
on changing the actual values of data items so that the 
values of data items are hidden but the distribution of 
the perturbed data is similar to that of the original data 
distribution. However, the exact original data values 
can not be accurately recovered. While this is 
acceptable in data mining applications, since data 
mining looks for trends and patterns, not exact values, 
for data integration, the exact answers are required.  

2.3. Efficiency and Privacy 

The third challenge is to perform the join 
operation efficiently without sacrificing much privacy. 
If the join operation is partitioned into multiple 
selection queries (one query for each join column 
value in table R), the problem is transformed into 
hiding the identity of the queries from dw while still 
being able to retrieve the result of such queries from 
dw. It has been shown that to completely guarantee the 
privacy of the queries, the entire contents of dw should 
be downloaded [22]. However, in some cases this is 
not practical. If the user is willing to sacrifice a small 
portion of his data privacy, the join operation can be 
done without retrieving all of table S.  

Commutative encryption-based approaches have 
also been proposed to solve the private data integration 
problem as well [23]-[25]. These approaches take 
advantage of a family of encryption functions in which 
the order that data item are encrypted by two different 
keys does not matter. Although such an approach hides 
the contents of query results from one or both parties, 
it requires the exchange of both parties’ encrypted data 
so that they can both mutually encrypt each others’ 
data. This makes such an approach expensive. 

Oblivious transfer [26]-[28] allows the user to 
secretly pose a query and only receive the result of the 
query and nothing else. The party providing the answer 
to the query does not learn the actual query. However, 
under an oblivious transfer protocol, encryption and 
transmission of all data items held by dw to the user 
are required. 

There has also been work in private information 
retrieval schemes [22][29], which allow a user to 
retrieve information from a database while maintaining 
the privacy of his query. In these schemes, table S 
would be replicated at multiple sites. Given a query, 

 
Figure 1. General problem. 



multiple queries are generated and sent to each of site 
such that no site can learn the actual original query by 
acting alone. The value of a record in column B of 
table R is not revealed to the data warehouse. 
However, many users working with sensitive data 
would be unwilling to trust such a system if there is no 
way to enforce non-collusion among the sites in the 
system, especially if the user simply sees the 
aggregation of the various sites as a black box. 

2.4. Other Related Works 

The proposed hash/noise method takes an 
approach similar that to the one discussed in [14], 
which takes advantage of collisions caused by hashes 
to introduce uncertainty in the true contents of a 
private database’s table. A HMAC [30] hash value is 
generated for each data item in both tables each time a 
query is posed. The size of the hash is varied to control 
the amount of privacy loss: when the hash size is 
increased, there are fewer possible collisions among 
join column values, and thus less uncertainty in the 
identity of a join column. Specifically, db first hashes 
the values of the column B from table R to truncated 
HMAC values small enough to satisfy the privacy 
constraint posed by the user. Then it transmits its 
hashed values and hash size to dw, where the relevant 
subset of table S is identified by performing a join on 
R’s hashed values with S’s hashed values (generated 
by the same HMAC hash key over column B of table 
S).  Because a new hash with a new size is generated 
for each query to vary the level of privacy, traditional 
indexing mechanisms can not be used to accelerate 
querying time and extra computation time is required 
to compute the hash values of all data items in both 
tables. As a result, the join operation becomes a very 
expensive operation.  

In contrast, our hash/noise method approach uses 
a set of fixed hashing and artificial hash values to 
control the amount of uncertainty in the identity of the 
join column values in table R, thereby controlling the 
level of privacy loss incurred. dw would contain an 
auxiliary table having a fixed set of columns. The hash 
values of join column values of table S are computed 
offline and are indexed. During query time, db will 
select the hash function that will yield the best 
performance. Artificial hash values will be injected 
into the data set communicated to dw by db, if the 
selected hash function does not sufficiently satisfy the 
privacy constraint. Because the hashes are known in 
advance, dw can store the resulting hash values 
directly in the database and does not need to 
recompute them for each query. A candidate set of 
tuples that belong to the result is returned by the dw 

when it receives the hashed values. The candidate set 
is then filtered by db to retrieve the final result. 

Furthermore, privacy control by hash truncation 
alone as suggested by [14] is very coarse. For 
example, suppose that a 16-bit hash does not satisfy 
the privacy constraint given a table R, so a 15-bit hash 
was selected instead. However, the 15-bit hash doubles 
the collision rate of the 16-bit hash, doubling the size 
of the candidate set for the join result. Whereas, the 
same 16-bit hash with some additional artificial hash 
values could have satisfied the same privacy constraint 
and yield far fewer records in the candidate set. 

 There has also been work in using Bloom filters 
to make joins in a distributed database system more 
efficient and private [31]-[33]. Like Bloom filters, our 
approach makes use of the uncertainty introduced by 
the collisions induced by hashing. However, we 
augment the simple hashing approach by introducing 
artificial noise values to control the level of privacy 
desired by the user in exchange for efficiency. 
Furthermore, Bloom filters will not allow the use of 
traditional indexing mechanism to speed up querying. 
If a Bloom filter was used to summarize the join 
column of table R and transmitted to dw, dw would 
have to apply the Bloom filter to each join column 
value in table S.  

Work in querying remote encrypted data [34]-[35] 
is also related to private data integration. However, 
when querying remote encrypted data, it is assumed 
that the encrypted data is owned by the user but exists 
on a public server. In the problem we are addressing, 
the data on the public server is generally publicly 
available and is not owned by any one user.  

3. Privacy Metric 

For our work, we use relative information gain as 
a basis for a metric to measure privacy loss when data 
is exchanged. The remainder of this section defines 
this metric and explains our motivation for selecting it. 

3.1. Entropy and Relative Information Gain 

Entropy and relative information gain were 
initially proposed in [30]. Entropy is the amount of 
uncertainty in a random variable X. If the random 
variable X can take on a set of finite values x1,x2,…xn, 
then its entropy is defined as: 
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The conditional entropy H(X|Y) is the amount of 
uncertainty in X after Y has been observed. Relative 
information gain, or the fraction of information 
revealed by Y about X, is defined as: 
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Privacy loss can be thought as the amount of 
information gained by an adversary about the contents 
of set of sensitive data items, which in this case are the 
contents of column B of table R.  

3.2. Absolute Privacy Loss 

If dw (i.e., the adversary) has no knowledge about 
the distribution of column B of table R, then it can only 
assume that each value that belongs to the domain U 

are equally likely to occur. Let R
~

 be a random 
variable describing the column B values (the only 
information revealed in a semi-join by db), of a tuple 
in table R. Absolute privacy loss pabs is defined as the 

relative information gain on R
~

 when any data set N is 
revealed to dw by db. By doing a simple substitution 
with equation 2, absolute privacy loss is: 
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3.3. Relative Privacy Loss  

It is possible that an adversary will make use of 
any available information to infer the contents of table 
R, in particular the contents of table S, since it is 
publicly available. Thus, relative privacy loss is 
defined as: 
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In this case, the adversary uses the distribution of 
values in column B of table S as a hint to the possible 
distribution of values in column B of table R. 

)|
~

( SRH  (the uncertainty of the join column values of 

a tuple in table R given the contents of table S) can be 
found by directly applying equation 2 on the 
distribution of values in column B of table S.  Because 
this metric captures the information gained by an 
adversary with respect to its current knowledge in 
contrast to absolute privacy loss, it is the metric we 
have chosen for evaluation of our approach. 

4. Privacy-Preserving Distributed Join 

Figure 2 outlines how to find R
⋈

BS when a 
privacy constraint exists. The first step projects 
column B from table R and applies a hashing function 
h to each value in column B, yielding table h(R) with 
column h(B). Step 2 will generate artificial hash 
values, yielding table n. In step 3, table N is derived 

from the union of n and h(R). Table N is then shipped 
to the data warehouse in step 4. At the data warehouse 
in step 5, table S and N are joined on column h(B), 
yielding table F. Table F is the set of possible tuples 
from dw that will belong to the final result of the join 
operation. Then table F is shipped to db in step 6. The 
final result, Goal, is found by filtering out the false 
positives in F by joining tables R and F. 

4.1. Privacy Constraint Satisfaction 

Because different hash functions have various 
(range) sizes, they yield different collision rates. Large 
hash functions tend to yield low collision rates; 
whereas, small hash functions tend to yield high 
collision rates. A hash function h with a high collision 
rate introduces large amounts of uncertainty about x 
when h(x) is known. This uncertainty is used to mask 
the true identity of a join column value in table R. 
Hash functions also hide clusters of data by hashing 
clustered values to uniformly-distributed hashed 
values. A hash function with a high collision rate has 
the side effect of “compressing” the values of column 
B from table R since a single hash value can be used to 
represent multiple actual values. However, if the 
collision rate is too high, many false positives will 
occur in F due to the high number of collisions, 
yielding high unnecessary transmission costs. Thus, it 
is important to use an appropriately sized hashing 
function to yield an acceptable level of performance 
while providing enough uncertainty to meet the 
privacy constraint.  

It is computationally expensive to dynamically 
compute the hash values resulting from a new hash 

 
Figure 2. Privacy-preserving distributed join. 



function with a different size each time a query is 
posed on a large data warehouse table. Furthermore, 
dynamic generation of values prevents indexing 
mechanism from being used to during the join 
operation in step 5. Our alternative approach is to 
predefine a set of m hash functions h1,h2,…,hm with m 
different sizes to be used to precompute m values for 
each record in table S on column B. The result of each 
of these hash functions on column B are stored 
explicitly (in m different columns) and indexed.  

When the user wishes to perform a join on his 
private table R and the public table S, he requires that 
the privacy loss incurred with respect to the contents of 
table S to not exceed prel. In other words: 
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Assuming a uniformly-distributing hash function, 
the number of real values that hash to the same hash 

value is estimated to be 
||

||

H

U
, where |U| is the size of 

the domain of possible values for column B (the 
universe) and |H| is the range size of hash function h. 
H is the set of possible values in the range of h. For 

any given hash value, 
||
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H

U
 possible values could have 

been used as input into the hash function and could 
have belonged to table R. For a set of |N| hash values, 

there is a total of 
||
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H

U
N  possible values that data 

items in column B of table R can take on with equal 

probability. Thus, )|
~
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By combining equations 5 and 6, the constraint on |N| 
for a given prel is found to be: 
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Applying equation 7 to each hash function, the 
minimum number of hash values |r1|,|r2|,…,|rm| for all 
m available hash functions on dw can be found.  

We can estimate the number of unique hash values 
generated by hashing each tuple in R with hi 
analogously to [14] as: 

 ||
||

1
11|)(|

||

i

R

i
esti H

H
Rh























−−=  (8) 

Then the actual size of the hash value set Ni that db 
would send to dw, if hash function hi was selected, is: 
 )|)(|,max(|| estiii RhrN =  (9) 

Note that |Ni| ≤ |hi (R)|, so it may be necessary to 
add artificial hash values to the set N sent by db to dw 
in addition to hi(R). This can be done by randomly 
selecting |Ni| - |hi(R)| hash values that belong to the 
range of hi. The set of artificial hash values is denoted 
as ni, where iii nRhN ∪= )( . 

4.2. Performance Estimation 

To select the appropriate hash function for the 
data exchange, the transmission cost normalized with 
respect to the brute-force method (i.e., downloading 
table S from dw to db) costi can be estimated. It is 
assumed that transmissions costs will dominate the 
execution costs of the overall join operation since the 
system will be operating over a limited 
communications link and search time is kept low with 
the use of indexes. 

If the brute-force method was used, ct|S| time 
units are required to transmit |S| records from dw to db 
where ct is the cost associated with transmitting a 
single record returned by dw in bytes. The cost of the 
hash/noise method can be estimated to be the sum of 
the cost of transmitting hash values from db to dw and 
the cost of transmitting the set of candidate tuples F 
returned by dw to db. The cost of sending the hash 
values is ch|Ni| time units for a hash function hi, where 
ch is the cost associated with transmitting a single hash 
value. The cost of the tuples returned by dw to db after 
the hash values have been sent is ct|F|. Thus, the 
transmission cost normalized with respect to the brute-
force method is summarized as: 
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Equation 10 shows that as the cost-ratio ch/ct 
approaches zero, the cost of sending hash values 

||
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Sc

Nc

t

ih  becomes small. As |F| approaches |S|, the 

performance of the hash/noise method is similar to that 
of the brute-force method; whereas, when |F| << |S|, 
we see significant performance improvement over the 
brute method. The goal is to minimize this 
performance metric. 

Since |F| is not known until query time, |F| can be 
estimated to be the average number of tuples returned 
by dw given the characteristics of the hash function 
and the contents of dw. It is found that on average for a 
given hash value, the number of values in column B 



that will collide to the some hash value is 
||
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iH

S
 for a 

hash function hi. Consequently, the average number of 

tuples returned by dw to db is ||
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normalized transmission cost costi for a hash function 
hi is estimated to be: 
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The hash function hi (with an associated Ni found 
with equation 9) that yields the lowest normalized 
transmission cost according to equation 11 is selected 
as the hash function for the data exchange and is 
denoted by h. The set h(R) is computed with hash 
function h. The number of hash values to be sent using 
h, denoted by |N| is the maximum of the corresponding 
|Ni| and |hi(R)|.  

5. Implementation and Results 

A preliminary implementation was done in Java 
with MySQL [37] via MySQL’s JDBC connector [38]. 
Borrowing a technique from [14], eight hash functions 
were created by simply truncating the result of a well 
known hash function, in this case MD5 [39]. Eight sets 
of hash values were generated for each B column value 
by truncating the result of the MD5 hash of a column B 
value to various bit sizes ranging from 8 to 16 bits. 
The hash value sets were stored and indexed in dw 

along with their respective S table. )|
~

( SRH  was 

computed offline and stored for each S table. 
Three sets of data were used for three instances of 

table S. The first two were each comprised of 2.5 
million synthetically generated tuples. The values of 
column B for table S were generated with a uniform 
distribution of values from 0 to 99,999 for the first set. 
The second set’s column B values were generated with 
a Gaussian distribution of values from 0 to 99,999 with 
a mean of 50,000 and a standard deviation of 1000. 
The third set of data was the “alignment block in rat 
chain of chromosome 10” table, taken from the UCSC 
Genome Browser Project [40]. The genome data set 
contains approximately 2.4 million records and was 
biased towards low join column values. 

The size of the domain U for the uniformly and 
Gaussian-distributed join column values was 100,000. 
There were approximately 123,598 different values for 
the join column in the genome data set, so the size of 
domain U for join column values was approximated to 
be 217. Unless otherwise specified, the cost-ratio ch/ct 

was ½ (i.e., the cost of transmitting of a hash value is 
half the cost of transmitting a record from table S).  

For each experiment, the R tables were generated 
randomly. The R tables to be joined with a uniformly 
or a Gaussian-distributed table S were generated by 
randomly selecting a value for column B from the 
range of 0 to 99,999. The R tables to be joined with 
the genome data were generated by randomly selecting 
tuples from the “summary information about chain of 
rat” table (also available from [40]). For each data 
point plotted, five R tables were randomly generated, 
each of which was joined with table S using the 
hash/noise method fives times. The maximum and 
minimum observed values of each studied parameter 
were ignored, and the rest were averaged. They are 
shown in the following graphs.  

5.1. Execution Time Analysis 

To begin the execution time analysis, the size of 
table R in relation to the size of the set of possible key 
values U (|R|/|U|) is varied and the required relative 
privacy loss is to not exceed 0.01. Figure 3 shows how 
execution time varies as |R|/|U| changes. Figure 4 
shows how the size of the transmitted sets |N| and |F| 
varies as |R|/|U| changes. For each of the execution 
time tests, the transmission cost of transmitting a hash 
value was equivalent to transmitting a 4-byte integer, 
and the cost of transmitting a tuple from S was 
equivalent to transmitting two 4-byte integers. 

For a Gaussian distribution and genome data 
distributions of table S, execution time increases 
linearly as |R|/|U| increases. Also the sizes of the set N 
and set F behave similarly as the execution time curve. 
Thus, the transmission of the two intermediary sets 
makes up a significant portion of the execution time 
for these two data distributions. 

  
Figure 3. Execution times for variable |R|/|U|. 

Target prel = 0.01 and ch/ct = ½.  



For a uniform distribution of table S, the execution 
time behaves as a step function, transitioning when 
|R|/|U| = 0.6. Figure 4 shows that |N| increases along 
with the execution time curve; whereas, |F| remains 
relatively constant. Thus, the transmission of set N (in 
contrast to both N and F as in the Gaussian and 
genome data distributions) makes up a significant 
portion of the execution time. As shown in a later 
graph in Figure 8, when |R|/|U| transitions from 0.6 to 
0.7, the system experiences the largest increase in hash 
size |H|, resulting in far fewer collisions; and, 
consequently many more hash values are sent to dw to 
meet the privacy constraint.  

Comparing the behavior of the various 
distributions, the execution time of the distributed join 
operation is directly related to the size of tables R, N, 
and F for the Gaussian data distribution and the 
genome data distribution. However, for a uniform 
distribution, the execution time is generally 
independent of |R|/|U|, except when there is a large 
transition in hash values used, because the 
transmission of noise and false-positives dominate the 

cost. From this figure, it can also be seen that the 
execution times for join operations operating over the 
genome data distribution are lower than for the 
Gaussian distribution, which are usually lower than for 
the uniform distribution. Thus, less uniform 
distributions will usually result in better execution 
times because they are more biased and thus will have 
less entropy. Uniform distributions will have the most 
entropy of any distribution, requiring either far more 
hash values or far more false positives to be returned 
by dw to satisfy the privacy constraint. 

In the second set of execution time analyses, 
|R/|U| is fixed to 0.1 and the maximum privacy loss, or 
the target relative privacy loss prel, is varied. Figure 5 
shows how execution times vary as the target prel 

changes. Figure 6 shows how |N| and |F| vary as the 
target prel changes in the second graph. Intuitively, as 
the privacy constraint is relaxed, execution times for 
both the Gaussian and uniform data distributions 
decrease since fewer hash values are needed to satisfy 
the privacy constraint. For any join operation whose 
target prel is greater than 0.21, the execution times, |N|, 
and |F| remain constant. In such cases, |h(R)| is large 
enough to satisfy the privacy constraint without any 
noise. Thus, there is very little performance gain by 
increasing the target relative privacy loss greater than 
21% for private tables containing only 10% of the total 
possible keys. 

Figure 5 also shows that the execution time of the 
genome data set remains relatively constant, with 
minor variations in execution times due to the 
randomness of data items in set R and consequently the 
high randomness of data items in set F. Furthermore, 
|N| remains constant regardless of the target privacy; 
and consequently, only the varying sizes of table F 
contribute to the variation in execution times, which is 
determined by the random selection of tuples in table 
R. This is shown in the second graph of Figure 6. The 

  

Figure 4. Set sizes |N| and |F| for variable |R|/|U|. Target prel = 0.01 and ch/ct = ½. 

  
Figure 5. Execution times for variable target prel. 

|R|/|U| = 0.1 and ch/ct = ½. 



variance in execution times is more than that of the 
other distributions because the data in the genome data 
set is much less uniformly distributed than the other 
two distributions.  

In summary, when target prel is low, there is more 
variation in execution times for the Gaussian and 
uniform distributions. In the high target privacy range, 
there is little or no change in execution times as the 
target privacy is increased. In other words, the 
hash/noise method has a more dramatic effect when 
the target prel is low. 

5.2. Absolute Privacy Loss Analysis 

Figure 7 shows how absolute privacy loss varies 
as |R| changes and the target prel is fixed at 0.01. For 
the uniform distribution, the absolute privacy loss is 
kept very low and close to the target prel of 0.01 since 

satisfying the relative privacy loss constraint for a 
uniform distribution is almost identical to satisfying an 
absolute privacy constraint of the same magnitude. 
However, for the Gaussian and genome data 
distributions, the absolute privacy loss differs greatly 
from the target relative prel, because far less effort is 
required to satisfy the relative privacy loss constraint 
than that required to satisfy an absolute privacy loss 
constraint of equal magnitude due to less uniformity in 
these distributions. For non-uniform distributions, 
achieving low absolute privacy loss would be much 
more expensive than achieving low relative absolute 
privacy loss; whereas, the cost for achieving both for a 
uniform distribution would be relatively the same.  

Figure 7 also shows that as |R|/|U| increases, 
absolute privacy loss decreases. In general, as |R|/|U| 
increases, the data revealed by db to dw increases. As 
a result, the pool of possible values that an adversary 
can use to infer the actual values of column B in table 
R increases as well, resulting in far greater uncertainty 
about the actual value of a column B value in table R. 

5.3. Hash Selection Analysis 

Figure 8 shows that the size of the selected hash 
function that yields the lowest transmission cost 
increases as |R|/|U| increases, for all distributions. The 
graphs show that as the uniformity of table S increases, 
a wider range of hash values are required to account 
for any variations in sizes of table R provided by a 
user. For the uniform distribution, hash sizes ranging 
from 10-bits to 16-bits are required, depending on the 
size of |R|. For the Gaussian distribution, hash sizes 
ranging from 12-bits to 16-bits are required. Finally, 
for the genome data set, hash sizes ranging from 14-
bits to 16-bits are needed. This experiment shows the 
necessary hash sizes that need to be precomputed and 
stored in dw for the various S table distributions. 

  
Figure 6. Set sizes |N| and |F| for variable target prel. |R|/|U| = 0.1 and ch/ct = ½. 

 

Figure 7. Varying absolute privacy. Target prel = 
0.01 and ch/ct = ½. 



5.4. Transmission Cost Analysis 

In this set of analyses, the transmission costs of 
the hash/noise method in relation to the brute-force are 
studied.  

The observed normalized transmission cost based 
on equation 10 using the observed |F| is compared to 
the estimated normalized transmission cost based on 
equation 11. The first graph of Figure 9 shows that the 
hash/noise method works well when |R|/|U| is very 
low, and especially well when the distribution of key 
values in table S is very biased. For uniform 
distributions of table S and a target prel of 0.01, the 
transmission costs of the hash/noise method was 90% 
or more than the transmission costs of the brute-force 
method, costing almost as much as the brute-force 
method. For a Gaussian-distributed data set, the 
transmission costs ranged from 35% to 95% of the 

brute-force method, depending on |R|/|U|. For the 
skewed genome data set, the transmission cost varied 
significantly depending on the size of |R|/|U|.   

The second graph shows that transmission cost 
steeply decreases as the target prel increases from 0.01 
to 0.2 for both Gaussian and uniform distributions. For 
any target prel greater than 0.2, transmission costs are 
25% of that of the brute-force method, for all 
distributions. The general behavior of steeply 
decreasing and flattening out was predicted by the 
estimated normalized transmission cost curves, but the 
actual transmission costs were not accurately 
estimated. For the less uniform genome data, the 
transmission costs remain relatively constant with an 
average of 25% of that of the brute-force method, for 
all target relative prel values and when |R|/|U| is 0.1. 
Like for the other distributions, the general behavior of 
the observed transmission cost curve was predicted by 
the estimated transmission cost curves, but the actual 
transmission costs were poorly predicted. 

Figure 10 compares the attained normalized 
transmission costs of the hash/noise method with the 
costs of simple semi-joins (i.e., no privacy constraints 
enforced). The graph shows that |R|/|U| is directly 
proportional to what the cost of the semi-join would 
be. The graph summarizes how much more the 
hash/noise method costs to satisfy a maximum relative 
privacy loss of 0.01 in comparison to a semi-join, 
which has no privacy. Using the hash/noise method, it 
is very expensive to achieve a maximum relative 
privacy loss of 0.01 when the distribution of the 
column B values of the S table is uniform, and 
especially when |R|/|U| is very low. On the other hand, 
when the S table is non-uniform, and especially when 
|R|/|U| is very high, there is much less additional cost 

 
Figure 8. Hash sizes for variable |R|/|U|. Target 

prel = 0.01 and ch/ct = ½.  

   
 (a) (b) 
Figure 9. Varying normalized transmission costs wit h respect to the brute-force method. (a) Target 

prel = 0.01 and sh/st = ½. (b) |R|/|U| = 0.1 and ch/ct = ½. 



for the added privacy that the hash/noise method 
provides for in comparison to a simple semi-join, 
which provides for no privacy. 

5.5.  Cost-Ratio Analysis 

Finally, the effect of the cost-ratio, or the ratio 
between the transmission costs of sending a hash-value 
and the transmission costs of sending a tuple, is 
examined. In this set of experiments, the target prel was 
fixed at 0.01 and |R|/|U| was fixed at 0.1. Figure 11 
shows that the cost-ratio has very little effect on the 
overall performance of the system because the number 
of tuples in set F makes the cost of transmitting set F 
the dominating cost of the hash/noise method, 
regardless of the cost-ratio between sending hash 
values and tuples from set F. 

6. Future Work 

From our initial results presented, several future 
research directions can be pursued. There is a need to 
develop a more accurate estimation of performance. 
Our current estimation uses the average number of 
collisions to estimate the number of tuples to be 
returned by dw, which works well for uniformly-
distributed data but poorly for non-uniformly 
distributed data. In future research, several additional 
features, such as the distribution of table S, should be 
incorporated into a new estimate. 

This work also needs to be expanded to infinite 
domains (e.g., people’s names), and specifically to 
develop a privacy loss metric reflect privacy loss in 

these domains. The current privacy loss metric 
operates on finite and discrete domains. If infinite 
domains are used, our method may be too conservative 
since there are an infinite number of actual values that 
may hash to a given hash value 

Our method only protects the privacy of data over 
a single query. However, it may be possible for 
adversaries to make inferences over multiple queries. 
Thus, some mechanism may be needed to prevent such 
inferences from being made. Perhaps, some type of 
caching technique can be used to avoid exposing the 
same private data set more than once. In such a 
technique, the data warehouse would operate on 
cached hashed values (including artificial hash values) 
rather than on new sets of hashed values for the same 
set of private data provided by db, if a new table S is to 
be joined on a previously joined table R in a 
subsequent query. 

Another future research direction is the use of a 
Bloom filter to reduce the size of the set R used by the 
hash/noise method. The data warehouse would send to 
the private database a Bloom filter based on the 
contents of table S before the hash/noise process 
described here occurs. Using this filter, the private 
database can remove data items that do not pass 
through the Bloom filter from table R; thereby, 
reducing the exposure of real data items that would not 
have been in the final result. This would also reduce 
|R|/|U|, which has been shown to yield better 
performance when low. However, this technique 
would require that all artificial hash values would have 
to be generated in such a way that a value that hashes 
to an artificial hash value would have to pass through 
the Bloom filter. Otherwise, the data warehouse can 
easily determine the artificial hash values from set N. 

 

Figure 10. Attained normalized transmission 
costs of join with privacy constraints and join 
without privacy constraints. Target prel = 0.01 
and ch/ct = ½. Cost of transmitting the key of a 
record from db is half the cost of transmitting 

a tuple from dw.  

 

Figure 11. Varying normalized transmission 
costs with variable cost-ratio. Target prel = 

0.01 and |R|/|U| = 0.1. 



How to efficiently generate artificial hash values with 
the Bloom filter constraint remains an open question.  

Finally, the hash/noise technique proposed 
currently only works for the equijoin operation. There 
may be a need to develop methods to protect the 
privacy of data that are processed by general joins. 

7. Conclusion 

Three challenges in solving the private data 
integration problem were presented: (1) privacy, (2) 
correctness, and (3) efficiency. The use of relative 
information gain addresses the first challenge. To 
address the second and third challenges, a correct and 
efficient technique was described to protect the 
privacy of private data of small size when it is to be 
integrated with a public database of much greater size. 
By making use of predefined hash functions and noise 
injection to satisfy any privacy constraints that a user 
may pose, traditional indexing mechanisms can be 
used, making the total cost of a distributed join 
dominated mostly by transmission costs rather than by 
search and computational costs.  

The hash/noise technique works better for less 
uniform public data sets than for more uniform data 
sets stored at the public data warehouse. Furthermore, 
uniform data distributions require a wider range of 
hash functions to be predefined than less uniform data 
distributions. 

In comparison to other related approaches, the 
hash/noise technique does not assume non-collusion, 
does not require downloading the entire data 
warehouse table, leverages existing indexing 
mechanisms, and provides for finer-grain control of 
privacy than simple hashing. The promising initial 
results presented show the merit of using hashing and 
noise injection to solve the problem of efficiently 
integrating small amounts private data with large 
amounts of public data. 
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Appendix 

Table 1. Notation used. 

Notation Meaning 

R Private database table 

S Public data warehouse table 

B Join column 

U Domain of column B values 

Goal Final result of join operation 

h Hash function 

|h(R)|est Estimated size of the set of hash values 
generated by a hash function h on table R 

h(R) Set of hash values generated by a hash 
function h on table R 

H Range of hash function h 

n Set of artificial hash values 

N Set sent to dw by db, which is the union 
of n and h(R) 

F Set containing the containing candidate 
tuples that may belong to Goal 

|V| Number of items in some set V 

db Private database 

dw Public data warehouse 

H(X) Entropy of random variable X 

RIG(X;Y) Relative information gain over random 
variable X when Y is observed. 

R
~

 Random variable describing the value of 
column B of a tuple in table R 

cost Transmission cost normalized with 
respect to the brute-force method 

pabs Absolute privacy loss 

prel Relative privacy loss with respect to the 
contents of table S 

ct Cost associated with transmitting a tuple 
returned by dw 

ch Cost associated with transmitting a hash 
value 

 


