Abstract
In order to select gene markers among differentially expressed transcripts identified from tumoral prostate, we have applied a filter and Significance Analysis of Microarrays (SAM) as the feature selection method on a previously normalized dataset of DNA microarray experiments reported by Reis et al., 2004 (Oncogene 23:6684-6692). Twenty seven samples with different degrees of tumor differentiation (Gleason scores) were analyzed. SAM was run using either two-class, unpaired data analysis with Gleason 5-6 and Gleason 9-10 samples, or multiclass response analysis with an additional category of Gleason 7-8. Both strategies revealed a promising set of transcripts associated with the degree of differentiation of prostate tumors.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Causton, H.C., Quackenbush, J., Brazma, A.: Microarray Gene Expression Data Analysis: A beginner’s guide. Blackwell Science Ltd., Oxford (2003)
van ’t Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002)
Misra, J., Schmitt, W., Hwang, D., Hsiao, L.L., Gullans, S., Stephanopoulos, G., Stephanopoulos, G.: Interactive exploration of microarray gene expression patterns in a reduced dimensional space. Genome Research 12, 1112–1120 (2002)
Tusher, V., Tibshirani, R., Chu, C.: Significance analysis of microarrays applied to ionizing radiation response. Proceedings of the National Academy of Sciences 98, 5116–5121 (2001)
Wu, B.: Differential Gene Expression Detection Using Penalized Linear Regression Models: the Improved SAM Statistics. Bioinformatics 21, 1565–1571 (2005)
Reis, E.M., Nakaya, H.I., Louro, R., Canavez, F.C., Flatschart, A.V., Almeida, G.T., Egidio, C.M., Paquola, A.C., Machado, A.A., Festa, F., Yamamoto, D., Alvarenga, R., da Silva, C.C., Brito, G.C., Simon, S.D., Moreira-Filho, C.A., Leite, K.R., Camara-Lopes, L.H., Campos, F.S., Gimba, E., Vignal, G.M., El-Dorry, H., Sogayar, M.C., Barcinski, M.A., da Silva, A.M., Verjovski-Almeida, S.: Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer. Oncogene 23, 6684–6692 (2004)
El-Hamdouchi, A., Willett, P.: Hierarchical document clustering using Ward’s method. In: Proceedings of the 9th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 149–156 (1986)
Saal, L.H., Troein, C., Vallon-Christersson, J., Gruvberger, S., Borg, A., Peterson, C.: BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biology 15, 1–8 (2002); SOFTWARE0003
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Simoes, A.C.Q., da Silva, A.M., Verjovski-Almeida, S., Reis, E.M. (2005). SAM Method as an Approach to Select Candidates for Human Prostate Cancer Markers. In: Setubal, J.C., Verjovski-Almeida, S. (eds) Advances in Bioinformatics and Computational Biology. BSB 2005. Lecture Notes in Computer Science(), vol 3594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11532323_23
Download citation
DOI: https://doi.org/10.1007/11532323_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28008-8
Online ISBN: 978-3-540-31861-3
eBook Packages: Computer ScienceComputer Science (R0)