Skip to main content

A Clustering Strategy to Find Similarities in Mycoplasma Promoters

  • Conference paper
Advances in Bioinformatics and Computational Biology (BSB 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3594))

Included in the following conference series:

  • 739 Accesses

Abstract

This paper presents a neural network clustering strategy to identify regularities in a dataset of Mycoplasma promoter sequences. The traditional way that prokaryotic promoters are identified is proven inadequate to the Mycoplasma family. Our clustering approach tries to discover regularities in base pair compositions of the dataset sequences to give clues which indicate the presence or absence of promoters. Several experiments with leave-one-out strategy and a negative dataset revealed a best way to fit model parameters. Preliminary results are promising for creating a computational model able to find promoter regions in Mycoplasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carpenter, G.A., Grossberg, S.: ART2: self-organization of stable category recognition codes for analog input patterns. Applied Optics 26(23), 4919–4930 (1987)

    Article  Google Scholar 

  2. Cooper, G.M., Hausman, R.E.: The Cell: A Molecular Approach 3rd edn. Amer. Soc. Microbiol., Washington and Sinauer Assoc., Sunderland, MA (2003)

    Google Scholar 

  3. Fyfe, C.: Artificial Neural Networks. Departmant of Computing and Information Systems. The University of Paisley, Scotland (1996)

    Google Scholar 

  4. Herrmann, R.: Molecular Biology of the Bacterium Mycoplasma pneumoniae. Report. Zentrum für Molekulare Biologie Heidelberg. Universität Heidelberg. Germany (2002)

    Google Scholar 

  5. Lewin, B.: Genes VII. Oxford University Press, New York (1999)

    Google Scholar 

  6. Valiati, J.F.: Reconhecimento de Voz para Comando de Direcionamento por Meio de Redes Neurais. PPGC da UFRGS. Porto Alegre (2000)

    Google Scholar 

  7. Weiner III, J., Herrmann, R., Browning, G.F.: Transcription in Mycoplasma pneumoniae. Nucleic Acids Research 28, 4488–4496 (2000)

    Article  Google Scholar 

  8. Wu, C.H., McLarty, J.M.: Neural Networks and Genome Informatics. Elsevier Science, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valiati, J.F., Engel, P.M. (2005). A Clustering Strategy to Find Similarities in Mycoplasma Promoters. In: Setubal, J.C., Verjovski-Almeida, S. (eds) Advances in Bioinformatics and Computational Biology. BSB 2005. Lecture Notes in Computer Science(), vol 3594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11532323_33

Download citation

  • DOI: https://doi.org/10.1007/11532323_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28008-8

  • Online ISBN: 978-3-540-31861-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics