Skip to main content

Metareasoning for Multi-agent Epistemic Logics

  • Conference paper
  • First Online:
Computational Logic in Multi-Agent Systems (CLIMA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3487))

Included in the following conference series:

  • 363 Accesses

Abstract

We present an encoding of a sequent calculus for a multiagent epistemic logic in Athena, an interactive theorem proving system for many-sorted first-order logic. We then use Athena as a metalanguage in order to reason about the multi-agent logic an as object language. This facilitates theorem proving in the multi-agent logic in several ways. First, it lets us marshal the highly efficient theorem provers for classical first-order logic that are integrated with Athena for the purpose of doing proofs in the multi-agent logic. Second, unlike model-theoretic embeddings of modal logics into classical first-order logic, our proofs are directly convertible into native epistemic logic proofs. Third, because we are able to quantify over propositions and agents, we get much of the generality and power of higher-order logic even though we are in a firstorder setting. Finally, we are able to use Athena’s versatile tactics for proof automation in the multi-agent logic. We illustrate by developing a tactic for solving the generalized version of the wise men problem.

This research was funded in part by the US Air Force Labs of Rome, NY.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Davis, E., Morgenstern, L.: Epistemic Logics and its Applications: Tutorial Notes, www-formal.stanford.edu/leora/krcourse/ijcaitxt.ps

  2. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  3. Meyer, J., Hoek, W.V.D.: Epistemic Logic for Computer Science and Artificial Intelligence. In: Cambridge Tracts in Theoretical Computer Science, vol. 41. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  4. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal logics: theory and applications. In: Studies in Logic and the Foundations of Mathematics, vol. 4. Elsevier, Amsterdam (1994)

    Google Scholar 

  5. Halpern, J., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artificial Intelligence 54, 319–379 (1992)

    Article  MathSciNet  Google Scholar 

  6. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Sixth International Conference on Principles of Knowledge Representation and Reasoning, pp. 636–647 (1998)

    Google Scholar 

  7. Giunchiglia, E., Giunchiglia, F., Sebastiani, R., Tacchella, A.: More evaluation of decision procedures for modal logics. In: Cohn, A.G., Schubert, L., Shapiro, S.C. (eds.) 6th international conference on principles of knowledge representation and reasoning (KR 1998), Trento (1998)

    Google Scholar 

  8. Hustadt, U., Schmidt, R.A.: On evaluating decision procedures for modal logic. In: Fifteenth International Joint Conference on Artificial Intelligence, pp. 202–209 (1997)

    Google Scholar 

  9. Heuerding, A.: LWBtheory: information about some propositional logics via the WWW. Logic Journal of the IGPL 4, 169–174 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Schmidt, R.A.: MSPASS (1999), http://www.cs.man.ac.uk/~schmidt/mspass/

  11. Fitting, M.: Basic modal logic. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Logical foundations, Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 4. Oxford Science Publications (1994)

    Google Scholar 

  12. McCarthy, J.: Formalization of two puzzles involving knowledge. In: Lifschitz, V. (ed.) Formalizing Common Sense: Papers by John McCarthy. Ablex Publishing Corporation, Norwood (1990)

    Google Scholar 

  13. Schmidt, R.A., Hustadt, U.: Mechanised reasoning and model generation for extended modal logics. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929, pp. 38–67. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Cyrluk, D., Rajan, S., Shankar, N., Srivas, M.: Effective theorem proving for hardware verification. In: Kumar, R., Kropf, T. (eds.) TPCD 1994. LNCS, vol. 901, pp. 203–222. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  15. Arkoudas, K.: Athena, http://www.pac.csail.mit.edu/athena

  16. Voronkov, A.: The anatomy of Vampire: implementing bottom-up procedures with code trees. Journal of Automated Reasoning 15 (1995)

    Google Scholar 

  17. Weidenbach, C.: Combining superposition, sorts, and splitting. In: Handbook of Automated Reasoning, vol. 2. North-Holland, Amsterdam (2001)

    Google Scholar 

  18. Gordon, M.J.C., Melham, T.F.: Introduction to HOL, a theorem proving environment for higher-order logic. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  19. Paulson, L.: Isabelle, A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  20. Arkoudas, K.: Denotational Proof Languages. MIT, Cambridge (2000) (PhD dissertation)

    Google Scholar 

  21. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic, 2nd edn. Springer, Heidelberg (1994)

    Book  Google Scholar 

  22. Huth, M., Ryan, M.: Logic in Computer Science: modelling and reasoning about systems. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  23. Snyers, D., Thayse, A.: Languages and logics. In: Thayse, A. (ed.) From modal logic to deductive databases, pp. 1–54. John Wiley & Sons, Chichester (1989)

    Google Scholar 

  24. Genesereth, M., Nilsson, N.: Logical Foundations of Artificial Intelligence. Morgan Kaufmann, San Francisco (1987)

    MATH  Google Scholar 

  25. Konolige, K.: A deduction model of belief. Research Notes in Artificial Intelligence, Pitman, London, UK (1986)

    MATH  Google Scholar 

  26. Ballim, A., Wilks, Y.: Artificial Believers. Lawrence Erlbaum Associates, Hillsdale (1991)

    Google Scholar 

  27. Pallotta, V.: Computational dialogue Models. In: 10th Conference of the European Chapter of the Association for Computational Linguistics EACL 2003 (2003)

    Google Scholar 

  28. Kim, J., Kowalski, R.: An application of amalgamated logic to multi-agent belief. In: Bruynooghe, M. (ed.) Second Workshop on Meta-Programming in Logic META 1990, pp. 272–283 (1990)

    Google Scholar 

  29. Aiello, L.C., Nardi, D., Schaerf, M.: Yet another solution to the three wisemen puzzle. In: Proceedings of the 3rd International Symposium on Methodologies for Intelligent Systems, pp. 398–407 (1988)

    Google Scholar 

  30. Dastani, M., Herzig, A., Hulstijn, J., van der Torre, L.: Inferring trust. In: Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 144–160. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Yang, Y., Bringsjord, S.: Mental Metalogic: A New, Unifying Theory of Human and Machine Reasoning. Erlbaum, Mahwah (2005)

    Google Scholar 

  32. Lescanne, P.: Epistemic logic in higher order logic: an experiment with COQ. Technical Report RR2001-12, LIP-ENS de Lyon (2001)

    Google Scholar 

  33. Coquand, T., Huet, G.: The Calculus of Constructions. Information and Computation 76, 95–120 (1988)

    Article  MathSciNet  Google Scholar 

  34. Basin, D., Matthews, S., Viganò, L.: A modular presentation of modal logics in a logical framework. In: Ginzburg, J., Khasidashvili, Z., Vogel, C., Lévy, J.J., Vallduví, E. (eds.) The Tbilisi Symposium on Logic, Language and Computation: Selected Papers, pp. 293–307. CSLI Publications, Stanford (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arkoudas, K., Bringsjord, S. (2005). Metareasoning for Multi-agent Epistemic Logics. In: Leite, J., Torroni, P. (eds) Computational Logic in Multi-Agent Systems. CLIMA 2004. Lecture Notes in Computer Science(), vol 3487. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11533092_7

Download citation

  • DOI: https://doi.org/10.1007/11533092_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28060-6

  • Online ISBN: 978-3-540-31857-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics