Skip to main content

Quantum Noisy Rational Function Reconstruction

  • Conference paper
Computing and Combinatorics (COCOON 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3595))

Included in the following conference series:

  • 1807 Accesses

Abstract

We consider the problem of determining a rational function f over a finite field \(\mathbb{F}_p\) of p elements given a noisy black box \({\mathcal B}\), which for each \(t \in \mathbb{F}_p\) returns several most significant bits of the residue of f(t) modulo the prime p.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden number problem. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 36–51. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Chalk, J.H.H.: Polynomial congruences over incomplete residue systems modulo k. Proc. Kon. Ned. Acad. Wetensch. 92, 49–62 (1989)

    MathSciNet  Google Scholar 

  3. van Dam, W.: Quantum algorithms for weighing matrices and quadratic residues. Algorithmica 34, 413–428 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. van Dam, W., Hallgren, S., Ip, L.: Quantum algorithms for hidden coset problems. In: Proc. 14th ACM-SIAM Symp. on Discr. Algorithms, pp. 489–498. SIAM, Philadelphia (2003)

    Google Scholar 

  5. Grigoriev, D.: Testing shift-equivalence of polynomials by deterministic, probabilistic and quantum machines. Theor. Comp. Sci. 180, 217–228 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hales, L., Hallgren, S.: An improved quantum Fourier transform algorithm and applications. In: Proc 41th IEEE Symp. on Found. of Comp. Sci., pp. 515–525. IEEE, Los Alamitos (2000)

    Chapter  Google Scholar 

  7. Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. In: Proc. 34th ACM Symp. on Theory of Comp., pp. 653–658. ACM, New York (2002)

    Google Scholar 

  8. Kitaev, Y., Shen, A.H., Vyalyi, M.N.: Classical and quantum computation. Graduate Studies in Mathematics, vol. 47. Amer. Math. Soc., Providence (2002)

    MATH  Google Scholar 

  9. Li, W.-C.W.: Number theory with qpplications. World Scientific, Singapore (1996)

    Book  Google Scholar 

  10. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  11. Moreno, C.J., Moreno, O.: Exponential sums and Goppa codes, 1. Proc. Amer. Math. Soc. 111, 523–531 (1991)

    MathSciNet  MATH  Google Scholar 

  12. Mosca, M., Ekert, A.: The hidden subgroup problem and eigenvalue estimation on a quantum computer. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 174–188. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Niederreiter, H., Schnorr, C.P.: Local randomness in polynomial random number and random function generators. SIAM J. Comp. 13, 684–694 (1993)

    Article  MathSciNet  Google Scholar 

  14. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  15. Russell, C., Shparlinski, I.E.: Classical and quantum algorithms for function reconstruction via character evaluation. J. Compl. 20, 404–422 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shor, P.: Quantum information theory: Results and open problems. Geometric and Functional Analysis 2, 816–838 (2000)

    MathSciNet  Google Scholar 

  18. Shparlinski, E.: Sparse polynomial approximation in finite fields. In: Proc. 33rd ACM Symp. on Theory of Comput., Crete, Greece, July 6-8, pp. 209–215 (2001)

    Google Scholar 

  19. Shparlinski, E., Winterhof, A.: Noisy interpolation of sparse polynomials in finite fields. Appl. Algebra in Engin., Commun. and Computing (to appear)

    Google Scholar 

  20. Simon, D.R.: On the power of quantum computation. SIAM J. Comp. 26, 1474–1483 (1997)

    Article  MATH  Google Scholar 

  21. Weil, A.: Basic number theory. Springer, New York (1974)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hallgren, S., Russell, A., Shparlinski, I.E. (2005). Quantum Noisy Rational Function Reconstruction. In: Wang, L. (eds) Computing and Combinatorics. COCOON 2005. Lecture Notes in Computer Science, vol 3595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11533719_43

Download citation

  • DOI: https://doi.org/10.1007/11533719_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28061-3

  • Online ISBN: 978-3-540-31806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics