Skip to main content

Exploring Simple Grid Polygons

  • Conference paper
Computing and Combinatorics (COCOON 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3595))

Included in the following conference series:

  • 1948 Accesses

Abstract

We investigate the online exploration problem of a short-sighted mobile robot moving in an unknown cellular room without obstacles. The robot has a very limited sensor; it can determine only which of the four cells adjacent to its current position are free and which are blocked, i.e., unaccessible for the robot. Therefore, the robot must enter a cell in order to explore it. The robot has to visit each cell and to return to the start. Our interest is in a short exploration tour, i.e., in keeping the number of multiple cell visits small. For abitrary environments without holes we provide a strategy producing tours of length \(S \leq C + \frac{1}{2} E -- 3\), where C denotes the number of cells – the area – , and E denotes the number of boundary edges – the perimeter – of the given environment. Further, we show that our strategy is competitive with a factor of \(\frac43\), and give a lower bound of \(\frac76\) for our problem. This leaves a gap of only \(\frac16\) between the lower and the upper bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arkin, E.M., Fekete, S.P., Mitchell, J.S.B.: Approximation algorithms for lawn mowing and milling. Technical report, Mathematisches Institut, Universität zu Köln (1997)

    Google Scholar 

  2. Arora, S.: Polynomial time approximation schemes for Euclidean TSP and other geometric problems. In: Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci., pp. 2–11 (1996)

    Google Scholar 

  3. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment I: The rectilinear case. J. ACM 45(2), 215–245 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Everett, H.: Hamiltonian paths in non-rectangular grid graphs. Report 86-1, Dept. Comput. Sci., Univ. Toronto, Toronto, ON (1986)

    Google Scholar 

  5. Fiat, A. (ed.): Dagstuhl Seminar 1996. LNCS, vol. 1442. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  6. Gabriely, Y., Rimon, E.: Competitive on-line coverage of grid environments by a mobile robot. Comput. Geom. Theory Appl. 24, 197–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grigni, M., Koutsoupias, E., Papadimitriou, C.H.: An approximation scheme for planar graph TSP. In: Proc. 36th Annu. IEEE Sympos. Found. Comput. Sci., pp. 640–645 (1995)

    Google Scholar 

  8. Handel, U., Icking, C., Kamphans, T., Langetepe, E., Meiswinkel, W.: Gridrobot – an environment for simulating exploration strategies in unknown cellular areas. Java Applet (2000), http://www.geometrylab.de/Gridrobot/

  9. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem. SIAM J. Comput. 31, 577–600 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Icking, C., Kamphans, T., Klein, R., Langetepe, E.: Exploring an unknown cellular environment. In: Abstracts 16th European Workshop Comput. Geom., Ben-Gurion University of the Negev, pp. 140–143 (2000)

    Google Scholar 

  11. Icking, C., Kamphans, T., Klein, R., Langetepe, E.: On the competitive complexity of navigation tasks. In: Hager, G.D., Christensen, H.I., Bunke, H., Klein, R. (eds.) Dagstuhl Seminar 2000. LNCS, vol. 2238, pp. 245–258. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Icking, C., Klein, R., Langetepe, E.: Searching for the kernel of a polygon: A competitive strategy using self-approaching curves. Technical Report 211, Department of Computer Science, FernUniversität Hagen, Germany (1997)

    Google Scholar 

  13. Icking, C., Klein, R., Langetepe, E., Schuierer, S., Semrau, I.: An optimal competitive strategy for walking in streets. SIAM J. Comput. 33, 462–486 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Itai, C.H.: Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in grid graphs. SIAM J. Comput. 11, 676–686 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kamphans, T.: Models and Algorithms for Online Exploration and Search. PhD thesis, University of Bonn (to appear)

    Google Scholar 

  16. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP. SIAM J. Comput. 28, 1298–1309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier Science Publishers B.V, North-Holland (2000)

    Chapter  Google Scholar 

  18. Ntafos, S.: Watchman routes under limited visibility. Comput. Geom. Theory Appl. 1(3), 149–170 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Umans, C., Lenhart, W.: Hamiltonian cycles in solid grid graphs. In: Proc. 38th Annu. IEEE Sympos. Found. Comput. Sci., pp. 496–507 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Icking, C., Kamphans, T., Klein, R., Langetepe, E. (2005). Exploring Simple Grid Polygons. In: Wang, L. (eds) Computing and Combinatorics. COCOON 2005. Lecture Notes in Computer Science, vol 3595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11533719_53

Download citation

  • DOI: https://doi.org/10.1007/11533719_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28061-3

  • Online ISBN: 978-3-540-31806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics