Skip to main content

On Approximate Balanced Bi-clustering

  • Conference paper
Computing and Combinatorics (COCOON 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3595))

Included in the following conference series:

  • 1886 Accesses

Abstract

We consider the balanced bi-clustering problem for a given data set, where the number of entities in each cluster is bounded, and its special case where the number of entities in each cluster is fixed. Several algorithms to attack these problems are proposed. In particular, a novel and efficient heuristic, in which we first reformulate the constrained bi-clustering problem into a quadratic programming(QP) problem and then try to solve it by optimization technique, is proposed. We prove that our algorithm can provide a 2-approximate solution to the original problem. Promising numerical results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, C., Kaplan, H., Orlin, J., Tarjan, R.: A Faster Primal Network Simplex Algorithm. Operations Research Center, Massachusetts Institute of Technology. OR 315-96 (1996)

    Google Scholar 

  2. Asano, T.: Effective Use of Geometric Properties for Clustering. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 30–46. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Batagelj, V., Ferligoj, A.: Constrained Clustering Problems. In: Proc. of IFCS 1998 (1998)

    Google Scholar 

  4. Bradley, P., Bennet, K., Demiriz, A.: Constrained K-Means Clustering. MSRTR- 2000-65, Microsoft Research (2000)

    Google Scholar 

  5. Hasegawa, S., Imai, H., Inaba, M.: Efficient Algorithms for Variance-Based kclustering. In: First Pacific Conf. on Comp. Graph. and Appl. (1993)

    Google Scholar 

  6. Hansen, P., Jaumard, B.: Clustering analysis and mathematical programming. Math. Prog. B. 79, 191–215 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Hansen, P., Mladenovic, N.: J-means: a new local search heuristic for minimum sum-of-squares clustering. Pattern Recog. 34, 405–413 (2001)

    Article  MATH  Google Scholar 

  8. He, J., Lan, M., Tan, C., Sung, S., Low, H.: Initialization of clusters refinement algorithms: a review and comparative study. In: International Joint Conf. on Neural Networks, IJCNN, pp. 25–29 (2004)

    Google Scholar 

  9. Inaba, M., Katoh, N., Imai, H.: Applications of Weighted Voronoi Diagrams and Randomization to Variance-Based k-clustering. In: Proc. of 10th ACM Symp. on Comp. Geo., pp. 332–339 (1994)

    Google Scholar 

  10. Jain, A.K., Murty, N.M., Flynn, P.J.: Data Clustering: A Review. ACM Comput. Surveys 31(1999), 264–323 (1999)

    Article  Google Scholar 

  11. MatouÅ¡ek, J.: On Approximate Geometric k-clustering. Dis. and Comput. Geo. 24, 61–84 (2000)

    Article  MATH  Google Scholar 

  12. Michalski, R.S., Chilausky, R.L.: Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis. International Journal of Policy Analysis and Information Systems 4(2), 125–161 (1980)

    Google Scholar 

  13. Späth, H.: Cluster analysis Algorithms for Data Reduction and Classification of Objects. John Wiley and Sons, Ellis Horwood (1980)

    MATH  Google Scholar 

  14. Tung, A., Ng, R., Lakshmanan, L., Han, J.: Constraint-Based Clustering in Large Databases. In: Proc. of the 8th Inter. Conf. on Database Theory, pp. 405–419 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, G., Peng, J., Wei, Y. (2005). On Approximate Balanced Bi-clustering. In: Wang, L. (eds) Computing and Combinatorics. COCOON 2005. Lecture Notes in Computer Science, vol 3595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11533719_67

Download citation

  • DOI: https://doi.org/10.1007/11533719_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28061-3

  • Online ISBN: 978-3-540-31806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics