Skip to main content

A Tight Analysis of the Maximal Matching Heuristic

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3595))

Abstract

We study the worst-case performance of the maximal matching heuristic applied to the Minimum Vertex Cover and Minimum Maximal Matching problems, through a careful analysis of tight examples. We show that the tight worst-case approximation ratio is asymptotic to \({\rm min}\, \{2, 1/(1-\sqrt{1-\epsilon})\}\) for graphs with an average degree at least εn and to min {2, 1/ε} for graphs with a minimum degree at least εn.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. Ann. Discrete Math. 25, 27–45 (1985)

    MathSciNet  Google Scholar 

  2. Cardinal, J., Labbé, M., Langerman, S., Levy, E., Mélot, H.: A tight analysis of the maximal matching heuristic. Technical Report 545, Université Libre de Bruxelles (2005), Available at http://www.ulb.ac.be/di/publications

  3. Chleb‘ık, M., Chleb‘ıková, J.: Approximation hardness of minimum edge dominating set and minimum maximal matching. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 415–424. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Christophe, J., Dewez, S., Doignon, J., Elloumi, S., Fasbender, G., Grégoire, P., Huygens, D., Labbé, M., Mélot, H., Yaman, H.: Linear inequalities among graph invariants: using GraPHedron to uncover optimal relationships (2004) (submitted), Available at http://www.optimization-online.org/DBHTML/2004/09/964.html

  5. Clementi, A., Trevisan, L.: Improved non-approximability results for vertex cover problems with density constraints. Theoretical Computer Science 225(1-2), 113–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diestel, R.: Graph Theory, Second Edition. Springer, Heidelberg (2000)

    Google Scholar 

  7. Eremeev, A.V.: On some approximation algorithms for dense vertex cover problem. In: Proceedings of SOR, Springer, Heidelberg (1999)

    Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of NP-completeness. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  9. Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. SIAM Journal on Computing 31, 1608–1623 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hansen, P., Mélot, H.: Variable neighborhood search for extremal graphs 9. Bounding the irregularity of a graph. To appear in S. Fajtlowicz et al (Eds.), Graphs and Discovery, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Providence, American Mathematical Society

    Google Scholar 

  11. Hastad, J.: Some optimal inapproximability results. In: Proceedings of the Twenty- Ninth Annual ACM Symposium on Theory of Computing, pp. 1–10 (1997)

    Google Scholar 

  12. Ibaraki, T., Nagamochi, H.: An approximation of the minimum vertex cover in a graph. Japan J. Indust. Appl. Math. 16, 369–375 (1999)

    Article  MathSciNet  Google Scholar 

  13. Imamura, T., Iwama, K.: Approximating vertex cover on dense graphs. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, SODA (2005)

    Google Scholar 

  14. Karakostas, G.: A better approximation ratio for the vertex cover problem. ECCC Report TR04-084 (2004)

    Google Scholar 

  15. Karpinski, M., Zelikovsky, A.: Approximating dense cases of covering problems. In: Pardalos, P., Du, D. (eds.) Proceedings of the DIMACS Workshop on Network Design: Connectivity and Facilites Location. DIMACS series in Disc. Math. and Theor. Comp. Sci., vol. 40, pp. 169–178 (1997)

    Google Scholar 

  16. Mélot, H.: Facets defining inequalities among graph invariants: the system GraPHedron (In preparation)

    Google Scholar 

  17. Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm for the vertex cover problem. Acta Inf. 22, 115–123 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. System. Sci. 43(3), 425–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardinal, J., Labbé, M., Langerman, S., Levy, E., Mélot, H. (2005). A Tight Analysis of the Maximal Matching Heuristic. In: Wang, L. (eds) Computing and Combinatorics. COCOON 2005. Lecture Notes in Computer Science, vol 3595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11533719_71

Download citation

  • DOI: https://doi.org/10.1007/11533719_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28061-3

  • Online ISBN: 978-3-540-31806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics