Abstract
We consider the problem of finding all minimal transversals of a hypergraph \({\mathcal H}\subseteq 2^V\), given by an explicit list of its hyperedges. We give a new decomposition technique for solving the problem with the following advantages: (i) Global parallelism: for certain classes of hypergraphs, e.g. hypergraphs of bounded edge size, and any given integer k, the algorithm outputs k minimal transversals of \({\mathcal H}\) in time bounded by \({\rm polylog}(|V|,|{\mathcal H}|,k)\) assuming \({\rm poly}(|V|,|{\mathcal H}|,k)\) number of processors. Except for the case of graphs, none of the previously known algorithms for solving the same problem exhibit this feature. (ii) Using this technique, we also obtain new results on the complexity of generating minimal transversals for new classes of hypergraphs, namely hypergraphs of bounded dual-conformality, and hypergraphs in which every edge intersects every minimal transversal in a bounded number of vertices.
This research was supported in part by the National Science Foundation (NSF), grant IIS-0118635. The third author is also grateful for the partial support by DIMACS, the NSF’s Center for Discrete Mathematics and Theoretical Computer Science.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Babai, L., Itai, A.: A fast randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7, 567–583 (1986)
Beame, P., Luby, M.: Parallel search for maximal independence given minimal dependence. In: Proc. of the First SODA Conference, pp. 212–218 (1990)
Berge, C.: Hypergraphs. North Holland Mathematical Library, vol. 445 (1989)
Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L.: An efficient incremental algorithm for generating all maximal independent sets in hypergraphs of bounded dimension. Parallel Processing Letters 10, 253–266 (2000)
Boros, E., Elbassioni, K.M., Gurvich, V., Khachiyan, L.: Generating Maximal Independent Sets for Hypergraphs with Bounded Edge-Intersections. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 488–498. Springer, Heidelberg (2004)
Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., Makino, K.: Dual-bounded generating problems: All minimal integer solutions for a monotone system of linear inequalities. SIAM J. Comput. 31(5), 1624–1643 (2002)
Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive Boolean functions. Optimization Methods and Software 10, 147–156 (1998)
Colbourn, C.J.: The combinatorics of network reliability. Oxford Univ. Press, Oxford (1987)
Dahlhaus, E., Karpinski, M.: A fast parallel algorithm for computing all maximal cliques in a graph and the related problems. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 139–144. Springer, Heidelberg (1988)
Dahlhaus, E., Karpinski, M., Kelsen, P.: An efficient parallel algorithm for computing a maximal independent set in a hypergraph of dimension 3. Inf. Process. Lett. 42(6), 309–313 (1992)
Domingo, C., Mishra, N., Pitt, L.: Efficient read-restricted monotone CNF/DNF dualization by learning with membership queries. Machine learning 37, 89–110 (1999)
Eiter, T.: Exact Transversal Hypergraphs and Application to Boolean μ-Functions. J. Symb. Comput. 17(3), 215–225 (1994)
Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput. 24, 1278–1304 (1995)
Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and generating hypergraph transversal. In: Proc. 34-th Anual ACM STOC Conf., pp. 14–22 (2002)
Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21, 618–628 (1996)
Garrido, O., Kelsen, P., Lingas, A.: A simple NC-algorithm for a maximal independent set in a hypergraph of polylog arboricity. Information Processing Letters 58(2), 55–58 (1996)
Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Information Processing Letters 27, 119–123 (1988)
Karp, R., Wigderson, A.: A fast parallel algorithm for the maximal independent set problem. JACM 32, 762–773 (1985)
Karp, R., Upfal, E., Wigderson, A.: The complexity of parallel search. Journal of Computer and System Science 36, 225–253 (1988)
Kelsen, P.: On the parallel complexity of computing a maximal independent set in a hypergraph. In: Proc. 24-th Anual ACM STOC Conf. (1992)
Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comput. 9, 558–565 (1980)
Luczak, T., Szymanska, E.: A parallel randomized algorithm for finding a maximal independent set in a linear hypergraph. J. Algorithms 25(2), 311–320 (1997)
Makino, K.: Efficient Dualization of O(log n)-Term Monotone Disjunctive Normal Forms. Discrete Applied Mathematics 126, 305–312 (2003)
Tamaki, H.: Space-efficient enumeration of minimal transversals of a hypergraph. IPSJ-AL 75, 29–36 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V. (2005). A New Algorithm for the Hypergraph Transversal Problem. In: Wang, L. (eds) Computing and Combinatorics. COCOON 2005. Lecture Notes in Computer Science, vol 3595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11533719_78
Download citation
DOI: https://doi.org/10.1007/11533719_78
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28061-3
Online ISBN: 978-3-540-31806-4
eBook Packages: Computer ScienceComputer Science (R0)