Skip to main content

Hinged Dissection of Polypolyhedra

  • Conference paper
Algorithms and Data Structures (WADS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3608))

Included in the following conference series:

Abstract

This paper presents a general family of 3D hinged dissections for polypolyhedra, i.e., connected 3D solids formed by joining several rigid copies of the same polyhedron along identical faces. (Such joinings are possible only for reflectionally symmetric faces.) Each hinged dissection consists of a linear number of solid polyhedral pieces hinged along their edges to form a flexible closed chain (cycle). For each base polyhedron P and each positive integer n, a single hinged dissection has folded configurations corresponding to all possible polypolyhedra formed by joining n copies of the polyhedron P. In particular, these results settle the open problem posed in [7] about the special case of polycubes (where P is a cube) and extend analogous results from 2D [7].Along the way, we present hinged dissections for polyplatonics (where P is a platonic solid) that are particularly efficient: among a type of hinged dissection, they use the fewest possible pieces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aichholzer, O., Aurenhammer, F.: Straight skeletons for general polygonal figures in the plane. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 117–126. Springer, Heidelberg (1996)

    Google Scholar 

  2. Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A novel type of skeleton for polygons. Journal of Universal Computer Science 1(12), 752–761 (1995)

    MathSciNet  Google Scholar 

  3. Akiyama, J., Nakamura, G.: Dudeney dissection of polygons. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 14–29. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Arkin, E.M., Held, M., Mitchell, J.S.B., Skiena, S.S.: Hamiltonian triangulations for fast rendering. The Visual Computer 12(9), 429–444 (1996)

    Google Scholar 

  5. Boltianskii, V.G.: Hilbert’s Third Problem. V. H. Winston & Sons (1978)

    Google Scholar 

  6. Cheng, S.-W., Vigneron, A.: Motorcycle graphs and straight skeletons. In: Proc. 13th Ann. ACM-SIAM Sympos. Discrete Algorithms, pp. 156–165 (2002)

    Google Scholar 

  7. Demaine, E.D., Demaine, M.L., Eppstein, D., Frederickson, G.N., Friedman, E.: Hinged dissection of polyominoes and polyforms. Computational Geometry: Theory and Applications (to appear) http://arXiv.org/abs/cs.CG/9907018

  8. Dudeney, H.E.: Puzzles and prizes. Weekly Dispatch, April 6 (1902)

    Google Scholar 

  9. Eppstein, D.: Hinged kite mirror dissection (June 2001), http://arXiv.org/abs/cs.CG/0106032

  10. Eppstein, D., Erickson, J.: Raising roofs, crashing cycles, and playing pool: Applications of a data structure for finding pairwise interactions. Discrete & Computational Geometry 22(4), 569–592 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Erickson, J.: Personal communication (February 2000)

    Google Scholar 

  12. Frederickson, G.N.: Dissections: Plane and Fancy. Cambridge Univ. Press, Cambridge (1997)

    MATH  Google Scholar 

  13. Frederickson, G.N.: Hinged Dissections: Swinging & Twisting. Cambridge Univ. Press, Cambridge (2002)

    MATH  Google Scholar 

  14. Griffith, S.: Growing Machines. PhD thesis, MIT Media Laboratory, September 2004

    Google Scholar 

  15. Kranakis, E., Krizanc, D., Urrutia, J.: Efficient regular polygon dissections. Geometriae Dedicata 80, 247–262 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lowry, M.: Solution to question 269, [proposed] by Mr. W. Wallace. In: T. Leybourn, ed., Mathematical Repository, vol. 3, part 1, pp. 44–46. W. Glendinning (1814)

    Google Scholar 

  17. Mao, C., Thallidi, V.R., Wolfe, D.B., Whitesides, S., Whitesides, G.M.: Dissections: Self-assembled aggregates that spontaneously reconfigure their structures when their environment changes. J. Amer. Chemical Soc. 124, 14508–14509 (2002)

    Article  Google Scholar 

  18. Palmer, L.: The helium stockpile: Under shifting conditions of heat and pressure. In: Installation, Radcliffe College, Cambridge, Massachusetts (April 2004)

    Google Scholar 

  19. Rus, D., Butler, Z., Kotay, K., Vona, M.: Self-reconfiguring robots. Communications of the ACM 45(3), 39–45 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demaine, E.D., Demaine, M.L., Lindy, J.F., Souvaine, D.L. (2005). Hinged Dissection of Polypolyhedra. In: Dehne, F., López-Ortiz, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2005. Lecture Notes in Computer Science, vol 3608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11534273_19

Download citation

  • DOI: https://doi.org/10.1007/11534273_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28101-6

  • Online ISBN: 978-3-540-31711-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics