Skip to main content

A Fast Technique for Constructing Evolutionary Tree with the Application of Compact Sets

  • Conference paper
Parallel Computing Technologies (PaCT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3606))

Included in the following conference series:

  • 500 Accesses

Abstract

Constructing an evolutionary tree has many techniques, and usually biologists use distance matrix on this activity. The evolutionary tree can assist in taxonomy for biologists to analyze the phylogeny. In this paper, we specifically employ the compact sets to convert the original matrix into several small matrices for constructing evolutionary tree in parallel. By the properties of compact sets, we do not spend much time and do keep the correct relations among species. Besides, we adopt both Human Mitochondrial DNAs and randomly generated matrix as input data in the experiments. In comparison with conventional technique, the experimental results show that utilizing compact sets can definitely construct the evolutionary tree in a reasonable time.

This work was supported in part by the NSC of ROC, under grant NSC93-2213-E-216-037.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandelt, H.J.: Recognition of tree metrics. SIAM Journal on Discrete Mathematics 3(1), 1–6 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dahlhaus, E.: Fast parallel recognition of ultrametrics and tree metrics. SIAM Journal on Discrete Mathematics 6(4), 523–532 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Day, W.H.E.: Computationally difficult parsimony problems in phylogenetic systematics. Journal of Theoretic Biology 103, 429–438 (1983)

    Article  Google Scholar 

  4. Day, W.H.E.: Computational complexity of inferring phylogenies from dissimilarity matrices. Bulletin of Mathematical Biology 49(4), 461–467 (1987)

    MATH  MathSciNet  Google Scholar 

  5. Dekel, E., Hu, J., Ouyang, W.: An optimal algorithm for finding compact sets. Information Processing Letters 44, 285–289 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Farach, M., Kannan, S., Warnow, T.: A robust model for finding optimal evolutionary trees. Algorithmica 13, 155–179 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fitch, W.M.: A non-sequential method for constructing trees and hierarchical classifications. Journal of Molecular Evolution 18, 30–37 (1981)

    Article  Google Scholar 

  8. Foulds, L.R.: Maximum savings in the Steiner problem in phylogency. Journal of theoretic Biology 107, 471–474 (1984)

    Article  Google Scholar 

  9. Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NP-complete. Advances in Applied Mathematics 3, 43–49 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Fransisco (1979)

    MATH  Google Scholar 

  11. Gusfield, D.: Algorithms on Strings, Trees, and Sequences, computer science and computational biology. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  12. Henry, M.D., Penny, D.: Branch and bound algorithms to determine minimal evolutionary trees. Mathematical Biosciences 59, 277–290 (1982)

    Article  MathSciNet  Google Scholar 

  13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  14. Kim, S.: A note on finding compact sets in graphs represented by an adjacency list. Information Processing Letters 57, 335–338 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Krivanek, M.: The complexity of ultrametric partitions on graphs. Information Processing Letter 27(5), 265–270 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, W.H., Graur, D.: Fundamentals of Molecular Evolution. Sinauer Associates (1991)

    Google Scholar 

  17. Liang, C.-K.: An O(n 2) Algorithm for Finding the Compact Sets of a Graph. BIT 33, 390–395 (1993)

    Google Scholar 

  18. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425 (1987)

    Google Scholar 

  19. Wu, B.Y., Chao, K.M., Tang, C.Y.: Approximation and Exact Algorithms for Constructing minimum Ultrametric Tree from Distance Matrices. Journal of Combinatorial Optimization 3, 199–211 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, KM., Chang, YW., Yang, Y., Zhou, J., Lin, CY., Tang, C.Y. (2005). A Fast Technique for Constructing Evolutionary Tree with the Application of Compact Sets. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2005. Lecture Notes in Computer Science, vol 3606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11535294_30

Download citation

  • DOI: https://doi.org/10.1007/11535294_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28126-9

  • Online ISBN: 978-3-540-31826-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics