Abstract
In this paper we discuss a new type of query in Spatial Databases, called the Trip Planning Query (TPQ). Given a set of points of interest P in space, where each point belongs to a specific category, a starting point S and a destination E, TPQ retrieves the best trip that starts at S, passes through at least one point from each category, and ends at E. For example, a driver traveling from Boston to Providence might want to stop to a gas station, a bank and a post office on his way, and the goal is to provide him with the best possible route (in terms of distance, traffic, road conditions, etc.). The difficulty of this query lies in the existence of multiple choices per category. In this paper, we study fast approximation algorithms for TPQ in a metric space. We provide a number of approximation algorithms with approximation ratios that depend on either the number of categories, the maximum number of points per category or both. Therefore, for different instances of the problem, we can choose the algorithm with the best approximation ratio, since they all run in polynomial time. Furthermore, we use some of the proposed algorithms to derive efficient heuristics for large datasets stored in external memory. Finally, we give an experimental evaluation of the proposed algorithms using both synthetic and real datasets.
This work was partially supported by NSF grants IIS-0133825, IIS-0308213, CCR-0311430, and ITR CCR-0325630.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arora, S.: Polynomial time approximation schemes for euclidean tsp and other geometric problems. In: FOCS, p. 2 (1996)
Arora, S.: Approximation schemes for NP-hard geometric optimization problems: A survey. Mathematical Programming (2003)
Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for deadline-tsp and vehicle routing with time-windows. In: STOC, pp. 166–174 (2004)
Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The R*-tree: An efficient and robust access method for points and rectangles. In: SIGMOD, pp. 220–231 (1990)
Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis, S.: Nearest neighbor and reverse nearest neighbor queries for moving objects. In: IDEAS, pp. 44–53 (2002)
Berchtold, S., Böhm, C., Keim, D.A., Kriegel, H.-P.: A cost model for nearest neighbor search in high-dimensional data space. In: PODS, pp. 78–86 (1997)
Böhm, C.: A cost model for query processing in high dimensional data spaces. TODS 25(2), 129–178 (2000)
Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153–180 (2002)
Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Computer Science Department,Carnegie Mellon University (1976)
Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (1997)
Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for tsp with neighborhoods in the plane. In: SODA, pp. 38–46 (2001)
Egenhofer, M.J.: What’s special about spatial?: database requirements for vehicle navigation in geographic space. In: SIGMOD, pp. 398–402 (1993)
Even, G., Kortsarz, G.: An approximation algorithm for the group steiner problem. In: SODA, pp. 49–58 (2002)
Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. Journal of Computer and System Sciences 69(3), 485–497 (2004)
Ferhatosmanoglu, H., Stanoi, I., Agrawal, D., Abbadi, A.E.: Constrained nearest neighbor queries. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 257–278. Springer, Heidelberg (2001)
Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group steiner tree problem. Journal of Algorithms 37(1), 66–84 (2000)
Hartmut Guting, R., Bohlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. TODS 25(1), 1–42 (2000)
Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)
Hjaltason, G., Samet, H.: Distance Browsing in Spatial Databases. TODS 24(2), 265–318 (1999)
Ihler, E.: Bounds on the Quality of Approximate Solutions to the Group Steiner Problem. Technical report, Institut fur Informatik,Uiversity Freiburg (1990)
Kolahdouzan, M.R., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial network databases. In: VLDB, pp. 840–851 (2004)
Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor queries. In: SIGMOD, pp. 201–212 (2000)
Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
Myung, Y.S., Lee, C.H., Tcha, D.W.: On the Generalized Minimum Spanning Tree Problem. Networks 26, 231–241 (1995)
Digital Chart of the World Server, http://www.maproom.psu.edu/dcw/
Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: ICDE, pp. 301–312 (2004)
Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: VLDB, pp. 802–813 (2003)
Papadopoulos, A., Manolopoulos, Y.: Performance of nearest neighbor queries in r-trees. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 394–408. Springer, Heidelberg (1996)
Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD, pp. 71–79 (1995)
Shahabi, C., Kolahdouzan, M.R., Sharifzadeh, M.: A road network embedding technique for k-nearest neighbor search in moving object databases. In: GIS, pp. 94–100 (2002)
Sharifzadeh, M., Kolahdouzan, M., Shahabi, C.: The Optimal Sequenced Route Query. Technical report, Computer Science Department, University of Southern California (2005)
Shekhar, S., Liu, D.-R.: Ccam: A connectivity-clustered access method for networks and network computations. TKDE 9(1), 102–119 (1997)
TSP Home Web Site, http://www.tsp.gatech.edu/
Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. In: STOC, pp. 296–305 (2001)
U.S. Geological Survey, http://www.usgs.gov/
Tao, Y., Papadias, D.: Time-parameterized queries in spatio-temporal databases. In: SIGMOD, pp. 334–345 (2002)
Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB, pp. 287–298 (2002)
Tao, Y., Zhang, J., Papadias, D., Mamoulis, N.: An Efficient Cost Model for Optimization of Nearest Neighbor Search in Low and Medium Dimensional Spaces. TKDE 16(10), 1169–1184 (2004)
Theodoridis, Y., Stefanakis, E., Sellis, T.: Efficient cost models for spatial queries using r-trees. TKDE 12(1), 19–32 (2000)
Vazirgiannis, M., Wolfson, O.: A spatiotemporal model and language for moving objects on road networks. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 20–35. Springer, Heidelberg (2001)
Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases. In: ICDE, pp. 643–654 (2005)
Xiong, X., Mokbel, M.F., Aref, W.G., Hambrusch, S.E., Prabhakar, S.: Scalable spatio-temporal continuous query processing for location-aware services. In: SSDBM, pp. 317–327 (2004)
Yiu, M.L., Mamoulis, N.: Clustering objects on a spatial network. In: SIGMOD, pp. 443–454 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, SH. (2005). On Trip Planning Queries in Spatial Databases. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds) Advances in Spatial and Temporal Databases. SSTD 2005. Lecture Notes in Computer Science, vol 3633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11535331_16
Download citation
DOI: https://doi.org/10.1007/11535331_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28127-6
Online ISBN: 978-3-540-31904-7
eBook Packages: Computer ScienceComputer Science (R0)