
Capacity Constrained Routing Algorithms for Evacuation Planning : A Summary of Results

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 05-023

Capacity Constrained Routing Algorithms for Evacuation Planning :

A Summary of Results

Qingsong Lu, Betsy George, and Shashi Shekhar

May 31, 2005





Capaity Constrained Routing Algorithms for Evauation Planning:A Summary of Results �
Qingsong Luy, Betsy George, Shashi ShekharDepartment of Computer Siene and EngineeringUniversity of Minnesota200 Union St SE, Minneapolis, MN 55455, USAE-mail: [lqingson; bgeorge; shekhar℄�s.umn.eduWWW home page: http://www.s.umn.edu/researh/shashi-group/May 31, 2005AbstratEvauation planning is ritial for numerous important appliations, e.g. disaster emergeny man-agement and homeland defense preparation. EÆient tools are needed to produe evauation plans thatidentify routes and shedules to evauate a�eted populations to safety in the event of natural disastersor terrorist attaks. The existing linear programming approah uses time-expanded networks to omputethe optimal evauation plan and requires a user-provided upper bound on evauation time. It su�ersfrom high omputational ost and may not sale up to large transportation networks in urban senarios.In this paper we present a heuristi algorithm, namely Capaity Constrained Route Planner(CCRP),whih produes sub-optimal solution for the evauation planning problem. CCRP models apaity as atime series and uses a apaity onstrained routing approah to inorporate route apaity onstraints. Itaddresses the limitations of linear programming approah by using only the original evauation networkand it does not require prior knowledge of evauation time. Performane evaluation on various net-work on�gurations shows that the CCRP algorithm produes high quality solutions, and signi�antlyredues the omputational ost ompared to linear programming approah that produes optimal solu-tions. CCRP is also salable to the number of evauees and the size of the network. We also provide adisussion on the formulation of a new optimal algorithm that uses A* searh to �nd the optimal solutionfor evauation planning. We prove that the heuristi funtion used in this A* formulation is monotoneand admissible.Keywords: evauation planning, routing and sheduling, transportation network

�This work was supported by Army High Performane Computing Researh Center ontrat number DAAD19-01-2-0014and the Minnesota Department of Transportation ontrat number 81655. The ontent of this work does not neessarily reetthe position or poliy of the government and no oÆial endorsement should be inferred. Aess to omputing failities wasprovided by the AHPCRC and the Minnesota Superomputing Institute.yCorresponding author: Qingsong Lu, E-mail: lqingson�s.umn.edu



1 IntrodutionEvauation planning is ritial for numerous important appliations, e.g. disaster emergeny managementand homeland defense preparation. Traditional evauation warning systems simply onvey the threat desrip-tions and the need for evauation to the a�eted population via mass media ommuniation. Suh systemsdo not onsider apaity onstraints of the transportation network and thus may lead to unantiipated ef-fets on the evauation proess. For example, when Hurriane Andrew was approahing Florida in 1992, thelak of e�etive planning aused tremendous traÆ ongestions, general onfusion and haos [1℄. Therefore,eÆient tools are needed to produe evauation plans that identify routes and shedules to evauate a�etedpopulations to safety in the event of natural disasters or terrorist attaks [12, 14, 7, 8℄.The urrent methods of evauation planning an be divided into two ategories, namely traÆ assignment-simulation approah and route-shedule planning approah. The traÆ assignment-simulation approah usestraÆ simulation tools, suh as DYNASMART [27℄ and DynaMIT [5℄, to ondut stohasti simulation oftraÆ movements based on origin-destination traÆ demands and uses queuing methods to aount forroad apaity onstraints. However, it may take a long time to omplete the simulation proess for a largetransportation network. The route-shedule planning approahes use network ow and routing algorithms toprodue origin-destination routes and shedules of evauees on eah route. Many researh works have beendone to model the evauation problem as a network ow problem [15, 4℄ and to �nd the optimal solutionusing linear programming methods. Hamaher and Tjandra [17℄ gave an extensive literature review of themodels and algorithms used in these linear programming methods. Based on the triple-optimization resultsby Jarvis and Ratli� [21℄, linear programming method for evauation route planning works as follows. First,it models the evauation network into a network graph, as shown by network G in Figure 1, and it requiresthe user to provide an estimated upper bound T of the evauation egress time. Seond, it onverts evauationnetwork G to a time-expanded network, as shown by GT in Figure 2, by dupliating the original evauationnetwork G for eah disrete time unit t = 0, 1, : : : , T . Then, it de�nes the evauation problem as a minimumost network ow problem [15, 4℄ on the time-expanded network GT . Finally, it feeds the expanded networkGT to minimum ost network ow solvers, suh as NETFLO [22℄, to �nd the optimal solution. For example,EVACNET [9, 16, 23, 24℄ is a omputer program based on this approah whih omputes egress time forbuilding evauations. It uses NETFLO ode to obtain the optimal solution. Hoppe and Tardos [19, 20℄ gavea polynomial time bounded algorithm by using ellipsoid method of linear programming to �nd the optimalsolution for the minimum ost ow problem. Theoretially, ellipsoid method has a polynomial boundedrunning time. However, it performs poorly in pratie and has little value for real appliation [6℄.Linear programming approah an produe optimal solutions for evauation planning. It is useful forevauation senarios with moderate size networks, suh as building evauation. However, this approah hasthe following limitations. First, it signi�antly inreases the problem size beause it requires time-expandednetwork GT to produe a solution. As an been seen in Figures 1 and 2, if the original evauation network Ghas n nodes and the time upper bound is T , the time-expanded network GT will have at least (T+1)n nodes.This approah may not be able to sale up to large size transportation networks in urban evauation senariosdue to high omputational run-time aused by the tremendously inreased size of the time-expanded network.Seond, linear programming approah requires the user to provide an upper bound T of the evauation timein order to generate the time-expanded network. It is almost impossible to preisely estimate the evauationtime for an urban senario where the number of evauees is large and the transportation network is omplex.An under-estimated time bound T will result in failure of �nding a solution. In this ase, the user will haveto inrease the value of T and re-run the algorithm until a solution an be reahed. On the other hand,
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Figure 1: Evauation Network G,(soure: [17℄) Figure 2: Time-expanded Network GT , with T=4, (soure: [17℄)an over-estimated T will result in an over-expanded network GT and hene lead to unneessary storage andrun-time.Heuristi routing and sheduling algorithms an be used to �nd sub-optimal evauation plan with reduedomputational ost. It is useful for evauation senarios with large size networks and senarios that do notrequire an optimal plan, but need to produe an eÆient plan within a limited amount of time. However,old heuristi approahes only ompute the shortest distane route from a soure to the nearest destinationwithout onsidering route apaity onstraints. It annot produe eÆient plans when the number of evaueesis large and the evauation network is omplex. New heuristi approahes are needed to aount for apaityonstraints of the evauation network. Lu, Huang and Shekhar [26℄ proposed prototypes of two heuristiapaity onstrained routing algorithms, namely SRCCP and MRCCP, and tested its performane usingsmall size building networks. SRCCP assigns only one route to eah soure node. It has very fast run-timebut the solution quality is very poor and hene has little value for real appliation. MRCCP assigns multipleroutes to eah soure node and produes high quality solution with muh less run-time ompared to that oflinear programming approah. However, its salability to large size networks is unsatisfatory beause it hasa omputational ost of O(p � n2logn) (where n the is number of nodes and p is the number of evauees). Inthis paper, we present an improved algorithm alled Capaity Constrained Route Planner (CCRP). CCRPan redue the run-time to O(p �nlogn) by onduting only one shortest path searh in eah iteration insteadof the multiple searhes used in MRCCP. We also present the analysis of its algebrai ost model and providethe results of performane evaluation using large size transportation networks.In the CCRP algorithm, we model apaity as a time series beause available apaity of eah node
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and edge may vary during the evauation. We use a generalized shortest path searh algorithm to aountfor route apaity onstraints. This algorithm an divide evauees from eah soure into multiple groupsand assign a route and time shedule to eah group of evauees based on an order that is prioritized byeah group's destination arrival time. It then reserves route apaities for eah group subjet to the routeapaity onstraints. The quikest route available for one group is re-alulated in eah iteration basedon the available apaity of the network. Performane evaluation on various network on�gurations showsthat the CCRP algorithm produes high quality solutions, and signi�antly redues the omputational ostompared to linear programming approah. CCRP is also salable to the number of evauees and the sizeof the network. A ase study using a nulear power plant evauation senario shows that this algorithm anbe used to improve existing evauation plans by reduing evauation time.We also provide a disussion of the formulation of a new optimal algorithm using A* searh[28, 29℄. Thisalgorithm addresses the limitations of linear programming approah by using only the original evauationnetwork to �nd the optimal solution. In addition, it does not require the user to provide an upper boundof the evauation time. We provide the the proof of monotoniity and admissibility of this A* searhalgorithm. We also give the design of the experimental evaluation and we expet detailed experimentalresults within the oming month.Outline: The rest of the paper is organized as follows. In Setion 2, the problem formulation is providedand related onepts are illustrated by an example evauation network. Setion 3 desribes the CapaityConstrained Route Planner (CCRP) algorithm and the algebrai ost model. In Setion 4, we present theexperimental design and performane evaluation. In Setion 5, we provide the formulation of new optimalalgorithm using A* searh. We summarize our work and disuss future diretions in Setion 6.
2 Problem FormulationWe formulate the evauation planning problem as follows:Given: A transportation network with non-negative integer apaity onstraints on nodes and edges, non-negative integer travel time on edges, the total number of evauees and their initial loations, andloations of evauation destinations.Output: An evauation plan onsisting of a set of origin-destination routes and a sheduling of evauees oneah route. The sheduling of evauees on eah route should observe the apaity onstraints of thenodes and edges on this route.Objetive: (1) Minimize the evauation egress time, whih is the time elapsed from the start of the eva-uation until the last evauee reahes the evauation destination. (2) Minimize the omputational ostof produing the evauation plan.Constraint: (1) Edge travel time preserves FIFO (First-In First-Out) property. (2) Edge travel time reetsdelays at intersetions. (3) Limited amount of omputer memory.We illustrate the problem formulation and a solution with an example evauation network, as shown inFigure 3. In this evauation network, eah node is shown by an ellipsis. Eah node has two attributes:maximum node apaity and initial node oupany. For example, at node N1, the maximum apaity is
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50, whih means this node an hold at most 50 evauees at eah time point, while the initial oupany is10, whih means there are initially 10 evauees at this node. In Figure 3, eah edge, shown as an arrow,represents a link between two nodes. Eah edge also has two attributes: maximum edge apaity and traveltime. For example, at edge N4-N6, the maximum edge apaity is 5, whih means at eah time point, atmost 5 evauees an start to travel from node N4 to N6 through this link. The travel time of this edge is 4,whih means it takes 4 time units to travel from node N4 to N6. This approah of modelling a evauationsenario to a apaitated node-edge graph is similar to those presented in Hamaher [17℄, Kisko [24℄ andChalmet [9℄.

 Figure 3: Node-Edge Graph Model of Example Evauation NetworkAs shown in Figure 3, suppose we initially have 10 evauees at node N1, 5 at node N2, and 15 at nodeN8. The task is to ompute an evauation plan that evauates the 30 evauees to the two destinations (nodeN13 and N14) using the least amount of time.Example 1 (An Evauation Plan) Table 1 shows an example evauation plan for the evauation networkin Figure 3. In this table, eah row shows one group of evauees moving together during the evauation witha group ID, soure node, number of evauees in this group, the evauation route with time shedule, andthe destination time. The route is shown by a series of node number and the time shedule is shown by astart time assoiated with eah node on the route. Take soure node N8 for example; initially there are 15evauees at N8. They are divided into 3 groups: Group A with 6 people, Group B with 6 people and GroupC with 3 people. Group A starts from node N8 at time 0 to node N10, then starts from node N10 at time 3to node N13, and reahes destination N13 at time 4. Group B follows the same route of group A, but has adi�erent shedule due to apaity onstraints of this route. This group starts from N8 at time 1 to N10, thenstarts from N10 at time 4 to N13, and reahes destination N13 at time 5. Group C takes a di�erent route.It starts from N8 at time 0 to N11, then starts from N11 at time 3 to N14, and reahes destination N14at time 5. The proedure is similar for other groups of evauees from soure node N1 and N2. The whole
4



evauation egress time is 16 time units sine the last groups of people (Group H and I) reah destination attime 16. This evauation plan is an optimal plan for the evauation senario shown in Figure 3.
Group of EvaueesID Soure No. of Evauees Route with Shedule Dest. TimeA N8 6 N8(T0)-N10(T3)-N13 4B N8 6 N8(T1)-N10(T4)-N13 5C N8 3 N8(T0)-N11(T3)-N14 5D N1 3 N1(T0)-N3(T1)-N4(T4)-N6(T8)-N10(T13)-N13 14E N1 3 N1(T0)-N3(T2)-N4(T5)-N6(T9)-N10(T14)-N13 15F N1 1 N1(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14 15G N2 2 N2(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14 15H N2 3 N2(T0)-N3(T3)-N4(T6)-N6(T10)-N10(T15)-N13 16I N1 3 N1(T1)-N3(T2)-N5(T5)-N7(T9)-N11(T14)-N14 16Table 1: Example Evauation PlanIn our problem formulation, we allow time dependent node apaity and edge apaity, but we assumethat edge apaity does not depend on the atual ow amount in the edge. We also allow time dependentedge travel time, but we require that the network preserve the FIFO (First-In First-Out) property.Alternate problem formulations of the evauation problem are available by hanging the objetive of theproblem. The main objetive of our problem formulation is to minimize the evauation egress time. Twoalternate objetives are: (1) Maximize the number of evauees that reah destination for eah time unit; (2)Minimize the average evauation time for all evauees. Jarvis and Ratli� presented and proved the tripleoptimization theorem [21℄, whih illustrated the properties of the solutions that optimize the above objetivesof the evauation problem. A review of linear programming approahes to solve these problem formulationswas given by Hamaher and Tjandra [17℄.

3 Proposed ApproahLinear programming approah an produe optimal solutions for evauation planning. It is useful for eva-uation senarios with moderate size networks, suh as building evauation. However, it may not be able tosale up to large size transportation networks in urban evauation senarios due to high omputational ostaused by the tremendously inreased size of the time-expanded network. Heuristi routing and shedulingalgorithms an be used to �nd sub-optimal evauation plan with redued omputational ost. It is useful forevauation senarios with large size networks and senarios that do not require an optimal plan, but needto produe an eÆient plan within a limited amount of time.In this setion, we present a heuristi algorithm, namely Capaity Constrained Route Planner (CCRP),that produes sub-optimal solutions for evauation planning. We model edge apaity and node apaityas a time series instead of �xed numbers. A time series represents the available apaity at eah timeinstant for a given edge or node. We propose a heuristi approah based on an extension of shortest pathalgorithms [13, 11℄ to aount for apaity onstraints of the network.
3.1 Capaity Constrained Route Planner (CCRP)The Capaity Constrained Route Planner (CCRP) uses an iterative approah. In eah iteration, the al-gorithm �rst searhes for route R with the earliest destination arrival time from any soure node to any
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destination node, taking previous reservations and possible waiting time into onsideration. Next, it om-putes the atual amount of evauees that will travel through route R. This amount is a�eted by the availableapaity of route R and the remaining number of evauees. Then, it reserves the node and edge apaityon route R for those evauees. The algorithm ontinues to iterate until all evauees reah destination. Thedetailed pseudo-ode and algorithm desription are shown in Algorithm 1.Algorithm 1 Capaity Constrained Route Planner (CCRP)Input:1) G(N;E): a graph G with a set of nodes N and a set of edges E;Eah node n 2 N has two properties:Maximum Node Capaity(n) : non-negative integerInitial Node Oupany(n) : non-negative integerEah edge e 2 E has two properties:Maximum Edge Capaity(e) : non-negative integerTravel time(e) : non-negative integer2) S: set of soure nodes, S � N;3) D: set of destination nodes, D � N;Output: Evauation plan : Routes with shedules of evauees on eah routeMethod:Pre-proess network: add super soure node s0 to network,link s0 to eah soure nodes with an edge whihMaximum Edge Capaity() =1 and Travel time() = 0; (0)while any soure node s 2 S has evauee do f (1)find route R < n0; n1; : : : ; nk > with time shedule < t0; t1; : : : ; tk�1 >using one generalized shortest path searh from super soure s0 to all destinations,(where s 2 S,d 2 D,n0 = s,nk = d)suh that R has the earliest destination arrival time among routes between all (s,d) pairs,and Available Edge Capaity(enini+1 ; ti) > 0; 8i 2 f0; 1; : : : ; k � 1g,and Available Node Capaity(ni+1; ti + Travel time(enini+1)) > 0; 8i 2 f0; 1; : : : ; k � 1g; (2)flow = min( number of evauees still at soure node s,Available Edge Capaity(enini+1 ; ti); 8i 2 f0; 1; : : : ; k � 1g,Available Node Capaity(ni+1; ti + Travel time(enini+1)); 8i 2 f0; 1; : : : ; k � 1g); (3)for i = 0 to k � 1 do f (4)Available Edge Capaity(enini+1 ; ti) redued by flow; (5)Available Node Capaity(ni+1; ti + Travel time(enini+1 )) redued by flow; (6)g (7)g (8)Output evauation plan; (9)
The CCRP algorithm keeps iterating as long as there are still evauees left at any soure node (line 1).Eah iteration starts with �nding the route R with the earliest destination arrival time from any souresnode to any destination node based on the urrent available apaities (line 2). This is done by generalizingDijkstra's shortest path algorithm [13, 11℄ to work with the time series node and edge apaities and edgetravel time. Route R is the route that starts from a soure node and gets to a destination node in the leastamount of time and available apaity of the route allows at least one person to travel through route R toa destination node. Given the evauation network in Figure 3, the example exeution trae of CCRP is asfollowsExample 2 (CCRP Exeution Trae) At the very �rst iteration, route R will be N8-N10-N13. Evaueesfrom soure node N8 an take this route to reah destination N13 at time 4 using the time shedule N8(T0)-N10(T3)-N13. At algorithm line 3, the atual number of evauees that will travel through route R isdetermined by taking the smallest number among the number of evauees at the soure node and theavailable apaities of eah nodes and edges on route R based on the time shedule that evauees will travelthrough eah node and edge. Thus, at the �rst iteration, this ow amount of R will be 6, whih is theavailable edge apaity of edge N8-N10 at time 0. 6



The next step is to reserve apaities for the evauees on eah node and edge of route R based on the timeshedule(lines 4-7). At the �rst iteration, the algorithm makes a reservation for the 6 evauees by reduing theavailable apaity of eah node and edge at orresponding time points. This means that available apaitiesare redued by 6 for edge N8-N10 at time 0, for node N10 at time 3, and for edge N10-N13 at time 3.The 6 evauees arrive at destination N13 at time 4. Then, the algorithm goes bak to line 1 for the nextiteration(line 8). The iteration terminates when the oupany of all soure nodes is redued to zero, whihmeans all evauee have been sent to destination nodes. Line 9 outputs the evauation plan, as shown inTable 1.Compared with the earlier MRCCP algorithm [26℄, major improvements in CCRP lie in line 0 and line 2.In MRCCP, �nding route R (line 2) is done by running generalized shortest path searhes from eah sourenode. Eah searh is terminated when any destination node is reahed. In CCRP, this step is improved byadding a super soure node s0 to the network and onneting s0 to all soure nodes(line 0). This allows usto omplete the searh for route R by using only one single generalized shortest path searh, whih takesthe super soure s0 as the start node. This searh terminates when any destination node is reahed. Sinethe super soure s0 is onneted to eah soure nodes by an edge with in�nite apaity and zero traveltime, it an be easily proved that the shortest route found by this searh is the route R we need in line 2.This improvement signi�antly redues the omputational ost of the algorithm by one degree of magnitudeompared with MRCCP. We give a detailed analysis of the ost model of CCRP algorithm in the nextsetion.
3.2 Algebrai Cost Model of CCRPWe now provide the algebrai ost model for the omputational ost of the proposed CCRP algorithm. Weassume that n is the number of nodes in the evauation network, m is the number of edges, and p is thenumber of evauees.The CCRP algorithm is an iterative approah. In eah iteration, the route for one group of people ishosen and the apaities along the route are reserved. The total number of iterations equals the number ofgroups generated. In the worst ase, eah individual evauee forms one group. Therefore, the upper boundof the number of groups is p, i.e. the number of iterations is O(p). In eah iteration, the omputation ofthe route R with earliest destination arrival time is done by running one generalized Dijkstra's shortest pathsearh. The worst ase omputational omplexity of Dijkstra's algorithm is O(n2) for dense graphs [11℄.Various implementations of Dijkstra's algorithm have been developed and evaluated extensively [4, 10, 32℄.Many of these implementations an redue the omputational ost by taking advantage of the sparsity ofthe graph. Transportation road networks are very sparse graphs with a typial edge/node ratio around 3. InCCRP, we implement Dijkstra's algorithm using heap strutures, whih runs in O(m+ nlogn) time [4, 10℄.For sparse graphs, nlogn is the dominant term. The generalization of Dijkstra's algorithm to aount forapaity onstraints a�ets only how the shortest distane to eah node is de�ned. It does not a�et theomputational omplexity of the algorithm. Therefore, we an omplete the searh for route R with O(nlogn)run-time. The reservation step is done by updating the node and edge apaities along route R, whih has aost of O(n). Therefore, eah iteration of the CCRP algorithm is done in O(nlogn) time. As we have seen,it takes O(p) iterations to omplete the algorithm. The ost model of the CCRP algorithm is O(p � nlogn).CCRP is an improved algorithm based on the same heuristi method of MRCCP [26℄ whih has a run-timeof O(p � n2logn). CCRP redues the omputational ost of MRCCP by one degree of magnitude.
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Algorithm Computational Cost Solution QualityCCRP O(p � nlogn) Sub-optimalMRCCP O(p � n2logn) Sub-optimalLinear Programming Approah at least O((T � n)6) OptimalTable 2: Comparison of Computational Costs (n: number of nodes, p: number of evauees, T : user-providedupper-bound on evauation time)The omputational ost of linear programming approah depends on the method used to solve the min-imum ost ow problem. Hoppe and Tardos [19℄ showed that this problem an be solved using ellipsoidmethod whih is theoretially polynomial time bounded. However, the omputational omplexity of ellip-soid method is at least O(N6)[6℄(where N is the number of nodes in the network). Sine linear programmingapproah requires a time-expanded network, N equals to (T + 1)n (where n is the number of nodes in theoriginal evauation network, T is the user-provided evauation time upper bound).Table 2 provides a omparison of CCRP, MRCCP, and the linear programming approah. As an beseen, linear programming approah produes optimal solutions but su�ers from high omputational ost.Both CCRP and MRCCP redue the omputation ost by produing sub-optimal solution, while CCRPgives better omputational ost than MRCCP.Lemma 1 : CCRP is stritly faster than MRCCP.The omputational osts of CCRP and MRCCP are O(p �nlogn) and O(p �n2logn) respetively, as shown inTable 2.
4 Experiment Design and Performane EvaluationPerformane evaluation of the CCRP algorithm was done by onduting experiments using various evauationnetwork on�gurations. In this setion, we present the experiment design and an analysis of the experimentresults.
4.1 Experiment DesignFigure 4 desribes the experiment design to evaluate the performane of the CCRP algorithm. The purposeis to ompare the algorithm run-time and solution quality of the proposed CCRP algorithms with that ofMRCCP [26℄ and NETFLO [22℄ whih is a popular linear programming pakage used to solve minimum ostow problems.First, we used NETGEN [25℄ to generate evauation networks with evauees. NETGEN is a program thatgenerates transportation networks with apaity onstraints and initial supplies based on input parameters.In our experiments, the following three were seleted as independent parameters to test their impats onthe the performane of the algorithms: number of evauees initially in the network, number of soure nodes,and network size represented by number of nodes. Number of edges is treated as a dependent parameter aswe set the number of edges to be equal to 3 times the number of nodes beause 3 is the typial edge/noderatio for real transportation road networks. Next, the same evauation network generated by NETGEN wasfed to the CCRP and MRCCP algorithms. Before feeding the network to NETFLO, we used a networktransformation tool to transform the evauation network into a time-expanded network, whih is requiredby minimum ost ow solvers as NETFLO to solve evauation problems [17, 9℄. This proess requires an
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input parameter T whih is the estimated upper-bound on evauation egress time. If the evauation annotbe ompleted by time T, NETFLO will return no solution. In this ase, we must inrease T to reate a newtime-expanded network and try to run NETFLO again until a solution an be reahed. Finally, after CCRP,MRCCP and NETFLO produed a solution for eah test ase, the evauation egress time, whih representsthe solution quality, and the algorithm run-time were olleted and analyzed in the data analysis module.

Figure 4: Experiment DesignThe experiments were onduted on a workstation with Intel Pentium IV 2GHz CPU, 2GB RAM andDebian Linux operating system.
4.2 Experiment Results and AnalysisWe want to answer three questions: (1) How does the number of evauees a�et the performane of thealgorithms? (2) How does the number of soure nodes a�et the performane of the algorithms? (3) Arethe algorithms salable to the size of the network, partiularly will they handle large size transportationnetworks as in urban evauation senarios?Experiment 1: How does the number of evauees a�et the performane of the algorithms?The purpose of the �rst experiment is to evaluate how the number of evauees a�ets the performane ofthe algorithms. We �xed the number of nodes and the number of soure nodes of the network, and varied thenumber of evauees to observe the quality of the solution and the run-time of CCRP, MRCCP and NETFLOalgorithms.The experiment was done with four test groups. Eah group had a �xed network size of 5000 nodes and�xed number of soure nodes at 1000, 2000, 3000, and 4000 respetively. We varied the number of evaueesfrom 5000 to 50000. Here we present the experiment results of the test group with number of soure nodes�xed at 2000. We omit the results from the other three groups sine this group shows a typial result of alltest groups. Figure 5 shows the solution quality represented by evauation egress time and Figure 6 showsthe run-times of the three algorithms.Sine CCRP and MRCCP use the same heuristi method to �nd solution, it is expeted that CCRP andMRCCP produed solutions with the same evauation egress time for eah test ase. As seen in Figure 5,
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Figure 5: Quality of Solution With Respet toNumber of Evauees
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Figure 6: Run-time With Respet to Number of Eva-ueesCCRP and MRCCP produed very high quality solution ompared with the optimal solution produed byNETFLO. The solution quality of CCRP and MRCCP drops slightly as the the number of evauees grows.In Figure 6, we an see that, in eah ase, the run-time of CCRP remains half that of MRCCP and lessthan 1/3 that of NETFLO. In addition, the CCRP run-time is salable to the number of evauees while therun-time of NETFLO grows muh faster.This experiment shows: (1) CCRP produes high quality solutions with muh less run-time than that ofNETFLO. (2) The run-time of CCRP is salable to the number of evauees.Experiment 2: How does the number of soure nodes a�et the performane of the algorithms?In the seond experiment, we evaluate how the number of soure nodes a�ets the performane of thealgorithms. We �xed the number of nodes and the number of evauees in the network, and varied thenumber of soure nodes to observe the quality of the solution and the run-time. In this experiment, byvarying the number of soure nodes, we atually reate di�erent evauee distributions in the network. Ahigher number of soure nodes means that the evauees are more sattered in the network.Again, the experiment was done with four test groups. Eah group had a �xed network size of 5000nodes and �xed number of evauees at 5000, 20000, 35000, and 50000 respetively. We varied the numberof soure nodes from 1000 to 4000. Here we present the experiment results of the test group with numberof evauees �xed at 5000. It shows a typial result of all test groups. Figure 7 shows the solution qualityrepresented by evauation egress time and Figure 8 shows the run-times of the three algorithms.As seen in Figure 7, in eah test ase, CCRP and MRCCP produed high quality solution (within 5perent longer evauation time) and the number of soure nodes has little e�et on the solution quality. Itis also noted that the evauation time is non-monotoni with respet to the number of soure nodes and weplan to explore the potential reasons in future works.Figure 8 shows that the run-time of all three algorithms are salable to the number of soure nodes.However, the run-time of CCRP remains less than half that of NETFLO.This experiment shows: (1)The solution quality of CCRP is not a�eted by the number of soure nodes.(2) The run-time of CCRP is salable to the number of soure nodes.
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Figure 7: Quality of Solution With Respet toNumber of Soure Nodes
0

100

200

300

400

500

600

1000 2000 3000 4000

Number of Source Nodes

A
lg

o
ri

th
m

 R
u

n
-T

im
e 

(s
ec

o
n

d
)

CCRP MRCCP NETFLO

Figure 8: Run-time With Respet to Number ofSoure NodesExperiment 3: Are the algorithms salable to the size of the network?In the third experiment, we evaluate how the network size a�ets the performane of the algorithms. We�xed the number of evauees and the number of soure nodes in the network, and varied the network size toobserve the quality of solution and the run-time of the algorithms.The experiment was done with a �xed number of evauees at 5000 and the number of soure nodes at10. We varied the number of nodes from 50 to 50000. Figure 9 shows the solution quality represented byevauation egress time and Figure 10 shows the run-times.
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Figure 9: Quality of Solution With Respet toNetwork Size
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Figure 10: Run-time With Respet to Network Size
Note: x-axis(number of nodes) in Figure 9 and 10 is on a logarithmi sale rather than linear. Run-time ofCCRP and MRCCP in Figure 10 grow in small polynomial.There is no data point for NETFLO at network size of 50000 nodes. We were unable to run NETFLOfor this setup beause the size of the time-expanded network beame too large (more than 20 million nodesand 80 million edges)that NETFLO ould not produe solution.As seen in Figure 9, in eah of the �rst three test ase, CCRP and MRCCP produed high quality solution11



Figure 11: Result Routes Overlay of Montiello Power Plant Evauation Planning (best viewed in olor)(within 5 perent longer evauation time) and the solution quality beomes loser to optimal solution as thenetwork size inreases. Figure 10 is shown with a data table of eah run-time. The x-axis(number of nodes)of Figure 10 is on a logarithmi sale rather than linear and the run-time of CCRP and MRCCP growin small polynomial. It an be seen that the run-time of CCRP is salable to the network size while theNETFLO run-time grows exponentially.This experiment shows: (1) Given a �xed number of evauees and soure nodes, the solution qualityof CCRP inreases as the network size inreases. (2) The run-time of CCRP is salable to the size of thenetwork.
4.3 A Case StudyWe also onduted experiments using a real evauation senario. As shown in Figure 11, the Montiellonulear power plant is about 40 miles to the northwest of the Twin Cities. Evauation plans need to be inplae in ase of aidents or terrorist attaks. The evauation zone is a 10-mile radius around the nulearpower plant as de�ned by Minnesota Homeland Seurity and Emergeny Management [3℄. A hand-draftedevauation route plan was developed to evauate the a�eted population to a high shool. However, thisplan did not onsider the apaity of the road networks and put high loads on two highways.We onduted an experiment using the CCRP algorithm. The experiment was done using the roadnetwork around the evauation zone provided by the Minnesota Department of Transportation [2℄, and theCensus 2000 population data for eah a�eted ity (irles in Figure 11). The total number of evaueesis about 42,000. As an be seen in Figure 11, our algorithm gives a muh better evauation route planby seleting shorter paths to redue evauation time and utilizing riher routes (routes near evauationdestination) to redue ongestions. The old evauation plan has an evauation egress time of 268 minutes.CCRP algorithm produed a muh better plan with evauation time of only 162 minutes. This experimentshows that our algorithm is e�etive in real evauation senarios to redue evauation time and improve
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existing plans.Our approah was presented in the UCGIS Congressional Breakfast Program on homeland seurity[30℄,and the Minnesota Homeland Seurity and Emergeny Management newsletter[31℄. It was also seleted bythe Minnesota Department of Transportation to be used in the evauation planning projet for the TwinCities Metro Area, whih evolves a road network of about 250,000 nodes and a population of over 2 millionpeople.
5 Disussion: An Optimal Approah Using A* SearhAs disussed in Setion 1, the linear programming methods to solve the evauation planning problem use timeexpanded networks that require a large amount of memory; these methods also require a prior knowledgeof the upper bound of evauation time. CCRP algorithm presented in Setions 3 and 4 addresses theseissues very e�etively; but the evauation times obtained are sub-optimal. There is a need to explore newapproahes that would guarantee optimal solutions without using time-expanded networks. In this setion,we disuss the possibility of formulating the evauation planning problem as a searh problem implementedas an A* searh. We present the heuristi funtion used in this A* formulation and we prove the propertiesof the heuristi funtion whih guarantees the optimality of the solution. This approah �nds an optimalsolution to the evauation planning problem without using time expanded networks and also eliminates theneed for user-provided upper bound of evauation time. Basi graph searh strategies and general outline ofan A* algorithm are explained in the Appendix.
5.1 Formulation of the Evauation Problem as an A* SearhThe searh spae onsists of di�erent states of the evauation network. Eah state is the snapshot of thenetwork at eah instant of time. The start node of the searh tree would be the initial state of the evauationnetwork at the start of evauation. The goal node would be the state of the network when there are oupantsonly at the destination nodes.
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Figure 12: Illustration of Start Node, Goal NodeFigure 12 illustrates the formulation for an evauation network with four nodes (shown in the �rst �gure)as a searh problem. The number in square brakets adjaent to a node indiates the node oupany. Node1 is the soure node and node 4 is the destination node. The soure node has an oupany of 4. Theseond �gure shows the start node of the searh tree whih represents the initial state of the network when
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all evauees are the soure node (node 1). The last �gure shows the goal node of the searh tree whihrepresents the state where all evauees are at the destination node (node 4).
5.2 Searh-Node Expansion in the Searh TreeGiven the oupany (number of people at the node) of the soure node and the apaity onstraints of theoutgoing edges of the node, all possible feasible ombinations are generated. This is formulated as follows.Pi xi � min(N;PCi), subjet to the onstraints 0 � xi � Ci; i = 1; ::; n.where n is the out-degree of the node, N is the node oupany, Ci is the apaity of the ith outgoing edge.Eah searh tree node with nonzero oupany thus has Qi Ci, hild nodes; eah orresponding to oneof the possible ombinations that are generated. Eah step in the expansion would orrespond to advaningin time by one unit.
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at an edge. The network in the initial state forms the start node of the searh tree. Given the oupany ateah node (exept the destination nodes) and apaity onstraints of outgoing edges of the nodes, all feasibleombinations are generated. For example for node 1 whih has two persons, the feasible groups that antravel along the two outgoing edges are (2; 0), (0; 2), (1; 0), (0; 1), (1; 1). There are �ve hild nodes for thestart node of the searh tree, eah representing the state of the network after one time unit, orrespondingto eah of these �ve possible ombinations.
5.3 Proposed Heuristi FuntionThe evaluation funtion f(n) of a searh node n is formulated as f(n) = g(n) + h(n).g(n) is the atual ost to reah the searh node n from the start node whih is the time taken to reah theurrent state from the start state. With the node expansion method used here, g(n) would be the depth ofthe node n, sine every expansion advanes the evauation network by one time unit. h(n) is the estimatedost from the node n to a goal node. We propose h(n) to be the maximum over all groups of the time takento reah the losest destination node with apaity onstraints ignored.The g and h values for eah searh node are shown in the �gure. The node with the least value of f = g+ his expanded. In this example, the goal state is reahed at the third level of the searh tree, when all evaueesare at the destination node.We an trae the evauation plan by traing the searh tree upwards from the goal node to the start node.Lemma 2 : The proposed h funtion is admissible.Proof : The h funtion learly underestimates the time required by the group to reah the destinationbeause the group that requires the largest time to reah the destination node de�nitely needs to moveto a destination node to reah a goal state. Here, we onsider the nearest destination and also ignore theonstraints on the ars. Bringing in the apaity onstraints an only add to the evauation time. Hene, his learly admissible.Lemma 3 : The proposed h funtion is monotone.Proof : To prove monotoniity of the heuristi h(n), we need to prove thath(n) + (m;n) � h(m) where node n is a hild of node m and (m;n) is the ost of the ar from m to n.We all this inequality "triangle inequality" in the rest of the proof.We de�ne h(n) as the largest travel time taken by a group to reah the losest destination when all thegroups travel along the shortest paths, ignoring all apaity onstraints.We prove the triangle inequality by onsidering the groups gi and gj whose shortest travel times to thedestination are the largest over all groups in searh nodes m and n and hene are the values of h funtion atthese searh nodes. We prove the inequality for the following ases whih exhaust all possibilities that anarise in an evauation senario.Case 1. gi is the same as gjCase 1a. gi stays at the same network node in both searh nodes m and n.Case 1b. gi moves through one time unit in the node expansion.Case 2. gi is not the same as gjCase 2a. gi and gj stay at the same network node.

15



Case 2b. gi stays at the same network node, but gj moves.Case 2. gi moves , but gj stays at the same network node.Case 2d. gi and gj move by one time unit.Detailed proof is given in Appendix 3 with Figure 15 whih illustrates the evauation network senariosfor the various ases listed above.The h values shown in the searh tree (Figure 13) learly illustrate that h is admissible and monotone.It an be observed that h funtion never overestimates the time required to reah the goal node from anysearh node. Also, the h value of every node and that of its parent node do satisfy the triangle inequality.
5.4 Experimental EvaluationThe experimental evaluation for this A* searh algorithm needs to answer the following questions: (1) Doesthe A* algorithm produe optimal evauation plans? (2) Does the urrent implementation of A* algorithmneed performane tuning? (3) How does the memory usage of A* algorithm ompared with other algorithms?Do we need new data strutures to redue memory used by A* algorithm?We implemented the A* searh algorithm and onduted experiments using similar method as desribedin Setion 4. First, we generate evauation networks using NETGEN and onvert it to a time-expandednetwork. Then, the evauation network is fed to the A* algorithm and the time-expanded network is fed toNETFLO. Finally, we ompare the results from the two algorithms.For question (1) experiments on all networks on�gurations show that, in eah of the test ases, the A*algorithm produes evauation plan with the same evauation time as that of NETFLO. It shows that theA* algorithm an produe optimal evauation plan as the linear programming approah. For questions (2),we vary the network size from 10 nodes to 40 nodes. Figure 14 shows the algorithm run-time of A* algorithmand NETFLO. It an be seen that the urrent implementation of the A* algorithm produes higher run-timethan that of NETFLO. It shows that further performane tuning are needed to improve the performane ofthe A* implementation. For question (3), initial results show that the urrent implementation of A* requireshigh memory usage. Detailed analysis of the ost model of the A* memory usage remains as our future workas we plan to explore the possibility of introduing new data strutures to redue the memory usage of theA* algorithm.
6 Conlusions and DisussionsIn this paper, we proposed a new apaity onstrained routing algorithm for evauation planning problem.Existing linear programming approah uses time-expanded network and requires user provided upper boundon evauation time. To address these limitations, we presented a heuristi algorithm, namely CapaityConstrained Route Planner(CCRP), whih produes sub-optimal solution for evauation planning problemwithout using time-expanded networks. We provided the algebrai ost model and the performane evalua-tions using various network on�gurations. Experiments show that CCRP algorithm produes high qualitysolution and signi�antly redues the omputational ost ompared to linear programming approah whihprodues optimal solution. It is also shown that the CCRP algorithm is salable to the number of evaueesand the size of the transportation network. A ase study using real evauation senario shows that CCRPalgorithm an be used to improve existing evauation plans by reduing total evauation time.
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Figure 14: Performane of A* and NETFLO with respet to Netswork sizeThe limitation of CCRP algorithm remains the follows. First, we assume that maximum apaity ofan edge does not depend on traÆ ow amount on the edge. We understand that it is a hallenging taskto aurately model the apaity of eah road segment in a real evauation senario as the atual traÆow rate may depend on vehile speed as well as road oupany. Seond, the generalized shortest pathalgorithm we used in CCRP requires that the edge travel time reets traÆ delays at intersetions. Forfuture work, we plan to inorporate existing researh results, suh as Ziliaskopoulos and Mahmassani [33℄,to better address this problem.To address the sub-optimality issue of the CCRP algorithm, we also explored the possibility of formulatingthe evauation problem as a searh problem using A* algorithm. Our A* searh formulation addresses thelimitations of linear programming approah by only using the original evauation network to �nd optimalsolution. Thus, it does not require prior knowledge of evauation time. We proved that the heuristi funtionused in our A* formulation is monotone and admissible thus guaranteeing the optimality of the solution. Weplan to evaluate the performane of this approah (as indiated in Setion 5.4) in the oming month.
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A AppendixA.1 Basi Graph SearhA graph onsists of a set of nodes whih represent the enodings of subproblems. Every graph used in searhwould have a start node that represents the initial state of the problem being solved. Certain pairs of nodesare onneted by direted ars. If the ar is direted from n to n0, n0 is a suessor of n and n is the parentof n0. Often the ars are assigned weights that represent the ost of traversing the ar. A sequene of nodesn1; ::nk, where eah ni is a suessor of ni�1 is a path from n1 to nk. The ost of a path is the sum of theosts of the ars along the path.The most basi operation in graph searh is node expansion. This involves omputing the representationsof all suessor nodes from that of its parent. A searh proedure is a well de�ned method for determiningthe order in whih nodes are expanded. If the searh proedure uses the information olleted by thesearh up to that point, it is alled uninformed searh. If the proedure uses partial information about theunexplored portion of the graph to guide the node expansion, searh is informed. Most searh proeduresdistinguish between nodes that were expanded alled losed nodes and nodes that have been generated butnot expanded alled open nodes. Familiarity with problem domain would sometimes indiate that ertaindiretions of searh are more promising than others. This knowledge an be used in deiding whih nodeto expand �rst. The promise of a node n is estimated numerially by a heuristi evaluation funtion f(n),whih would depend on the desription of n, desription of the goal, information gathered by the searh upto that point and any extra knowledge about the problem domain.In A� searh, the evaluation funtion f(n) is formulated as f(n) = g(n) + h(n) where g(n) is the ost of thepath in the searh tree from the start node to n and h(n) is the estimated minimum ost of the path fromn to the goal node. The strategy followed is to expand the open node n with the minimum f [29, 28℄.A.2 Outline of A* algorithm [29℄1. Put the start node s, on OPEN.2. If OPEN is empty, exit with failure.3. Find the node n in OPEN with minimum f . Remove n from OPEN and plae it on CLOSED.4. If n is goal node, exit with suess. The solution an be obtained by traing bak the pointers bakfrom n to s.5. Otherwise, expand n, generating all its suessors. Link the suessors to n. For every suessor n0 ofn, � If n0 is already not on OPEN or CLOSED, estimate h(n0) and alulate f(n0) = g(n0) + h(n0)where g(n0) = g(n) + (n; n0); g(s) = 0 and (n; n0) i s the ost of the ar from n to n0.� If n0 is already on OPEN or CLOSED, reassign g(n0) to the urrent minimum.� If n0 required a reassignment of g(n0) and was on CLOSED, reopen it.6. Go to step 2.A heuristi funtion h is said to be admissible if 8nh(n) � h�(n), where h�(n) is the heapest ost ofpath going from n to the goal node [29℄. A searh algorithm is alled admissible if it is guaranteed to �ndan optimal path from the start node to a goal node. A� is admissible if h is admissible [18℄.A heuristi funtion h(n) is monotone if h(m) � h(n) + (m;n), 8(m;n)jnis a hild of m in the searhtree and (m;n) is the ost of the ar from m to n. If A* searh uses a monotone heuristi, it �nds optimalpaths to all expanded nodes [29℄.A.3 Detailed Proof for Lemma 3 (Monotoniity of h funtion)Lemma 3 : The proposed h funtion is monotone.Proof : To prove monotoniity of the heuristi h(n), we need to prove thath(n) + (m;n) � h(m) where node n is a hild of node m and (m;n) is the ost of the ar from m to n.We all this inequality "triangle inequality" in the rest of the proof.We de�ne h(n) as the largest travel time taken by a group to reah the losest destination when all thegroups travel along the shortest paths, ignoring all apaity onstraints.19



Let t(gi; k) denote the smallest time taken by a group gi to reah the losest destination at the searh nodek.Now let us onsider searh nodes m and n where n is a hild of m. At node m, let the smallest time takenby the group gi be the largest among all groups. In other words, h(m) = t(gi;m).At node n, let the smallest time taken by the group gj be the largest amon g all groups. In other words,h(n) = t(gj ; n) We prove the monotoniity by proving the triangle inequality for the following ases.1. Case 1. gi is the same as gjCase 1a. gi stays at the same network node in both searh nodes m and n.Here, h(n) = h(m) and the triangle inequality is true.Case 1b. gi moves through one time unit in the node expansion.(m;n) = 1 here. We need to show h(n) + 1 � h(m). If gi moved along t he shortest path thatwas deteted at the searh node m, h(n) + 1 = h(m) satisfying the inequality. If gi moved alonganother path (sine we enumerate all possible paths in node expansion , this is possible) towardsanother destination node,h(n)+ 1 � h(m). Otherwise this urrent path would be deteted as theshortest path in parent node m.2. Case 2. gi is the not the same as gjCase 2a. Groups gi and gj stay at the same network node.This is not possible under ase 2.Case 2b. gi stays at the same network node, but gj moves.Here, we need to show that t(gj ; n) + (m;n) � t(gi;m).Sine t(gi;m) = t(gi; n) (group gi did not move), inequality beomes t(gj ; n) + (m;n) � t(gi; n).This is true sine t(gj ; n) � t(gi; n) by de�nition of h(n)Case 2. gi moves , but gj stays at the same network node.t(gi;m) � t(gj ;m) by the de�nition of h(m) and t(gj ; n) � t(gi; n) by the de�nition of h(n).Combining these two inequalities and using t(gj ;m) = t(gj ; n), we get t(gi;m) � t(gj ; n) � t(gi; n)t(gi;m) � t(gi; n) � (m;n) sine if this were not the ase, it ontradits the optimality of theshortest path in searh node m. Therefore, t(gi;m) � t(gj ; n) � (m;n) or t(gj ; n) + (m;n) �t(gi;m)Case 2d. gi and gj move by one time unit.t(gi;m) � t(gj ;m)t(gj ; n) � t(gi; n) by de�nition of h(m) and h(n) respetively.We need to prove the triangle inequality, t(gj ; n) + (m;n) � t(gi;m).Adding (m;n) to the left-hand side of the seond inequality,t(gj ; n) + (m;n) � t(gi; n)If t(gi;m) � t(gi; n), the triangle inequality is satis�ed trivially beause t(gj ; n) � t(gi; n).If t(gi;m) > t(gi; n), t(gi;m) � t(gi; n) � 1; if this is not true, this path would be the shortestpath in searh node m.Therefore,t(gi; n) + 1 � t(gi; n).To prove the triangle inequality,a)if t(gj ; n) � t(gj ;m),t(gj ;m)� t(gj ; n) � 1 and t(gj ;m) � t(gi;m)Therefore, t(gi;m) � t(gj ;m) � t(gj ; n)t(gi;m) � t(gj ; n) + 1, t(gj ; n) + (m;n) � t(gi;m)b)if t(gj ; n) > t(gj ;m),t(gj ; n)� t(gj ;m) � 1 beause the time is always omputed in integer units.Sine t(gj ; n) � t(gi; n) and t(gj ;m) � t(gi;m), we get t(gj ; n)�t(gi;m) � 1, t(gj ; n)+(m;n) �t(gi;m)The proposed heuristi h(n) is monotone. Figure 15 illustrates the the evauation network senarios forthe various ases listed above.
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Figure 15: Illustration of Network Senarios
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