Skip to main content

GAMMA: A Framework for Moving Object Simulation

  • Conference paper
Advances in Spatial and Temporal Databases (SSTD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3633))

Included in the following conference series:

  • 2021 Accesses

Abstract

Simulating user mobility is crucial for mobile computing and spatial database research. However, all existing moving object generators assume a fixed and often unrealistic mobility model. In this paper, we represent the moving behavior as a trajectory in the location-temporal space and propose two generic metrics to evaluate a trajectory dataset. In this context, trajectory generation is treated as an optimization problem and a framework, GAMMA, is proposed to solve it by the genetic algorithm. We demonstrate GAMMA’s practicability and flexibility by configuring it for two specific simulations, namely, cellular network trajectory and symbolic location tracking. The experimental results show that GAMMA can efficiently and robustly produce high quality moving object datasets for various simulation objectives.

This work is supported by the Research Grants Council, Hong Kong SAR under grants HKUST6277/04E and CITYU1204/03E.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Theodoridis, Y., Silva, J., Nascimento, M.: On the generation of spatiotemporal datasets. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, p. 147. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Brinkhoff, T.: A framework for generating network-based moving objects. Geoinformatica 6, 153–180 (2002)

    Article  MATH  Google Scholar 

  3. Pfoser, D., Theodoridis, Y.: Generating semantics-based trajectories of moving objects. In: International Workshop on Emerging Technologies for Geo-Based Applications, pp. 59–76 (2000)

    Google Scholar 

  4. Wong, W.S.V., Leung, V.C.M.: An adaptive distance-based location update algorithm for next-generation pcs networks. IEEE Journal on Selected Areas in Communications 19, 1942–1952 (2001)

    Article  MathSciNet  Google Scholar 

  5. Akyildiz, I., Ho, J., Lin, Y.: Movement based location update and selective paging for pcs networks. IEEE/ACM Transaction on Networking 4, 629–638 (1996)

    Article  Google Scholar 

  6. Chambers, L. (ed.): The Practical Handbook of Genetic Algorithms Applications. Chapman&Hall/CRC (2001)

    Google Scholar 

  7. Jardosh, A., Belding-Royer, E., Almeroth, K., Suri, S.: Towards realistic mobility models for mobile ad hoc networks. In: Proceedings of the ACM/IEEE MobiCom Conference, pp. 217–229 (2003)

    Google Scholar 

  8. Broch, J., Maltz, D.A., Johnson, D., Hu, Y.C., Jetcheva, J.: A performance comparison of multi-hop wireless ad hoc network routing protocols. In: Proceedings of the ACM/IEEE MobiCom Conference, pp. 85–97 (1998)

    Google Scholar 

  9. Yoon, J., Liu, M., Noble, B.: Sound mobility models. In: Proceedings of the ACM/IEEE MobiCom Conference, pp. 205–216 (2003)

    Google Scholar 

  10. Whitley, D.: A genetic algorithm tutorial. Statistics and Computing 4, 65–85 (1994)

    Article  Google Scholar 

  11. Cerny, E., Faye, P., Pownall, P.: Improved design verification by random simulation guided by genetic algorithms. In: Proceedings of the International Conference on Chip Design Automation, ICDA (2000)

    Google Scholar 

  12. Baldi, M., Corno, F., Rebaudengo, M., Squillero, G.: Ga-based performance analysis of network protocols. In: Proceedings of 9th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 118–124 (1997)

    Google Scholar 

  13. Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping to massive datasets. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 1–11. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Faloutsos, C., Lin, K.I.: Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: Proceedings of the ACM SIGMOD Conference, pp. 163–174 (1995)

    Google Scholar 

  15. Klimasauskas, C.C.: Not knowing your random number generator could be costly: Random generators - why are they important. PC Artificial Intelligence Magazine 16, 52–58 (2002)

    Google Scholar 

  16. L’Ecuyer, P.: Software for uniform random number generation: Distinguishing the good and the bad. In: Proceedings of the Winter Simulation Conference, pp. 95–105. IEEE Press, Los Alamitos (2001)

    Google Scholar 

  17. Zheng, B., Lee, D.L.: Semantic caching in location-dependent query processing. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 97–116. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Tao, Y., Papadias, D.: Time-parameterized queries in spatio-temporal databases. In: Proceedings of the ACM SIGMOD Conference, pp. 334–345 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, H., Lee, DL. (2005). GAMMA: A Framework for Moving Object Simulation. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds) Advances in Spatial and Temporal Databases. SSTD 2005. Lecture Notes in Computer Science, vol 3633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11535331_3

Download citation

  • DOI: https://doi.org/10.1007/11535331_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28127-6

  • Online ISBN: 978-3-540-31904-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics