Abstract
Most recent research on querying and managing data streams has concentrated on traditional data models where the data come in the form of tuples or XML data. Complex types of streaming data, in particular spatio-temporal data, have primarily been investigated in the context of moving objects and location-aware services. In this paper, we study query processing and optimization aspects for streaming (RSI) data. Streaming RSI is typical for the vast amount of imaging satellites orbiting the Earth, and it exhibits certain characteristics that make it very attractive to tailored query optimization techniques. Our approach uses a Dynamic Cascade Tree (DCT) to (1) index spatio-temporal query regions associated with continuous user queries and (2) efficiently determine what incoming RSI data is relevant to what queries. The (DCT) supports the processing of different types of RSI data, ranging from point data to more general spatial extents in which the incoming imagery can be single pixels, rows of pixels, or discrete parts of images. The DCT exploits spatial trends in incoming RSI data to efficiently filter the data of interest to the individual query regions. Experimental results using random input and Geostationary Operational Environmental Satellite (GOES) data give a good insight into processing streaming RSI and verify the efficiency and utility of the DCT .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: A new model and architecture for data stream management. The VLDB Journal 12(2), 120–139 (2003)
Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proc. 21th ACM Symposium on Principles of Database Systems (PODS), pp. 1–16 (2002)
Babcock, B., Babu, S., Datar, M., Motwani, R., Thomas, D.: Operator scheduling in data stream systems. The VLDB Journal 13(4), 335–353 (2004)
de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2000)
Carney, D., Cetintemel, U., Rasin, A., Zdonik, S., Cherniack, M., Stonebraker, M.: Operator scheduling in a data stream manager. In: Proceedings of 29th VLDB Conference, pp. 838–849 (2003)
Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: TelegraphCQ: Continuous dataflow processing for an uncertain world. In: First Biennial Conference on Innovative Data Systems Research, CIDR 2003 (2003)
GOES I-M DataBook. Space Systems-Loral (2001), rsd.gsfc.nasa.gov/goes/text/goes.databook.html
Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of the ACM SIGMOD Int. Conf. on Management of Data, pp. 47–57 (1984)
Hadjieleftheriou, M.: Spatial Index Library. Department of Computer Science and Engineering, University of California, Riverside, version 0.80b edn. (2004)
Hart, Q., Gertz, M.: Indexing query regions for streaming geospatial data. In: 2nd Workshop on Spatio-temporal Database Management, STDBM 2004 (2004)
Hellerstein, J.M., Franklin, M.J., Chandrasekaran, S., Deshpande, A., Hildrum, K., Madden, S., Raman, V., Shah, M.A.: Adaptive query processing: Technology in evolution. IEEE Data Eng. Bulletin 23, 7–18 (2000)
Kalashnikov, D.V., Prabhakar, S., Hambrusch, S.E.: Main memory evaluation of monitoring queries over moving objects. Distributed and Parallel Databases 15(2), 117–135 (2004)
Kim, K., Cha, S.K., Kwon, K.: Optimizing multidimensional index trees for main memory access. In: Proc. of the ACM SIGMOD International Conference on Management of Data, pp. 139–150 (2001)
van Kreveld, M.J., Overmars, M.K.: Concatenable segment trees. Technical report, Rijksuniversiteit Utrecht (1988)
Madden, S., Shah, M., Hellerstein, J.M., Raman, V.: Continuously adaptive continuous queries over streams. In: Proc. of the ACM SIGMOD International Conference on Management of Data, pp. 49–60 (2002)
Madden, S., Franklin, M.J.: Fjording the stream: An architecture for queries over streaming sensor data. In: Intern. Conf. on Data Engineering, pp. 555–566 (2002)
Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: R-trees have grown everywhere. Unpublished Technical Report (2003), http://www.rtreeportal.org/pubs/MNPT03.pdf
Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: Scalable incremental processing of continuous queries in spatio-temporal databases. In: Proc. of the ACM SIGMOD International Conference on Management of Data, pp. 623–634 (2004)
Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W., Hambrusch, S.: Query indexing and velocity constrained indexing: Scalable techniques for continuous queries on moving objects. IEEE Trans. on Computers 51(10), 1124–1140 (2002)
Samet, H.: Hierarchical representations of collections of small rectangles. ACM Comput. Surv. 20(4), 271–309 (1988)
Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The R+-tree: A dynamic index for multi-dimensional objects. In: Proceedings of 13th International Conference on Very Large Data Bases, pp. 507–518 (1987)
SGI: Standard Template Library Programmer’s Guide (1999)
Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial queries. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 443–454 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hart, Q., Gertz, M., Zhang, J. (2005). Evaluation of a Dynamic Tree Structure for Indexing Query Regions on Streaming Geospatial Data. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds) Advances in Spatial and Temporal Databases. SSTD 2005. Lecture Notes in Computer Science, vol 3633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11535331_9
Download citation
DOI: https://doi.org/10.1007/11535331_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28127-6
Online ISBN: 978-3-540-31904-7
eBook Packages: Computer ScienceComputer Science (R0)