Abstract
It is well known by Inductive Logic Programming (ILP) practioners that ILP systems usually take a long time to find valuable models (theories). The problem is specially critical for large datasets, preventing ILP systems to scale up to larger applications. One approach to reduce the execution time has been the parallelization of ILP systems. In this paper we overview the state-of-the-art on parallel ILP implementations and present work on the evaluation of some major parallelization strategies for ILP. Conclusions about the applicability of each strategy are presented.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Srinivasan, A., Muggleton, S., King, R.D., Sternberg, M.J.E.: Mutagenesis: Ilp experiments in a non-determinate biological domain. In: Wrobel, S. (ed.) Proceedings of the 4th International Workshop on Inductive Logic Programming. GMD-Studien, vol. 237, pp. 217–232 (1994)
Dolsak, B., Bratko, I., Jezernik, A.: Application of machine learning in finite element computation. In: Machine Learning, Data Mining and Knowledge Discovery: Methods and Applications. John Wiley and Sons, Chichester (1997)
Muggleton, S., King, R.D., Sternberg, M.J.E.: Predicting protein secondary structure using inductive logic programming. Protein Engineering 5, 647–657 (1992)
Srinivasan, A., King, R.D., Muggleton, S., Sternberg, M.J.E.: Carcinogenesis predictions using ILP. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 273–287. Springer, Heidelberg (1997)
Tang, L.R., Mooney, R.J., Melville, P.: Scaling up ilp to large examples: Results on link discovery for counter-terrorism. In: Proceedings of the KDD 2003 Workshop on Multi-Relational Data Mining (MRDM 2003), pp. 107–121 (2003)
Železný, F., Srinivasan, A., Page, D.: Lattice-search runtime distributions may be heavy-tailed. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 333–345. Springer, Heidelberg (2003)
Srinivasan, A.: A study of two probabilistic methods for searching large spaces with ilp. Technical Report PRG-TR-16-00, Oxford University Computing Laboratory (2000)
Camacho, R.: Improving the efficiency of ilp systems using an incremental language level search. In: Annual Machine Learning Conference of Belgium and the Netherlands (2002)
Srinivasan, A., King, R.D., Bain, M.E.: An empirical study of the use of relevance information in inductive logic programming. JMLR (2003)
Fonseca, N., Costa, V.S., Camacho, R., Silva, F.: On avoiding redundancy in Inductive Logic Programming. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 132–146. Springer, Heidelberg (2004)
Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele, H.: Improving the efficiency of Inductive Logic Programming through the use of query packs. Journal of Artificial Intelligence Research 16, 135–166 (2002)
Costa, V.S., Srinivasan, A., Camacho, R., Blockeel, H., Van Laer, W.: Query transformations for improving the efficiency of ilp systems. JMLR (2002)
De Raedt, L.: A perspective on inductive logic programming. In: The logic programming paradigm - a 25 year perspective, pp. 335–346. Springer, Heidelberg (1999)
Page, D.: ILP: Just do it. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 3–18. Springer, Heidelberg (2000)
Page, D., Srinivasan, A.: Ilp: a short look back and a longer look forward. J. Mach. Learn. Res. 4, 415–430 (2003)
Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing, 2nd edn. Addison-Wesley, Reading (2003)
Fürnkranz, J.: Separate-and-conquer rule learning. Artificial Intelligence Review 13(1), 3–54 (1999)
Muggleton, S.: Inverse entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming 13(3-4), 245–286 (1995)
Quinlan, J.R., Cameron-Jones, R.M.: FOIL: A midterm report. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 3–20. Springer, Heidelberg (1993)
Srinivasan, A.: Aleph manual (2003)
Ohwada, H., Mizoguchi, F.: Parallel execution for speeding up inductive logic programming systems. In: Arikawa, S., Furukawa, K. (eds.) DS 1999. LNCS (LNAI), vol. 1721, pp. 277–286. Springer, Heidelberg (1999)
Matsui, T., Inuzuka, N., Seki, H., Itoh, H.: Comparison of three parallel implementations of an induction algorithm. In: 8th Int. Parallel Computing Workshop, Singapore, pp. 181–188 (1998)
Ohwada, H., Nishiyama, H., Mizoguchi, F.: Concurrent execution of optimal hypothesis search for inverse entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 165–173. Springer, Heidelberg (2000)
Wielemaker, J.: Native preemptive threads in swi-prolog. In: ICLP, pp. 331–345 (2003)
Wang, Y., Skillicorn, D.: Parallel inductive logic for data mining. In: Workshop on Distributed and Parallel Knowledge Discovery, KDD 2000, Boston. ACM Press, New York (2000)
Graham, J., Page, C.D., Kamal, A.: Accelerating the drug design process through parallel inductive logic programming data mining. In: Proceeding of the Computational Systems Bioinformatics (CSB 2003). IEEE, Los Alamitos (2003)
Dehaspe, L., De Raedt, L.: Parallel inductive logic programming. In: Proceedings of the MLnet Familiarization Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases (1995)
Michalski, R.S.: Pattern recognition as rule-guided inductive inference. In: Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 349–361 (1980)
Smith, R.G.: The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Trans. Computers 29(12), 1104–1113 (1980)
Muggleton, S., Firth, J.: Relational rule induction with cprogol4.4: A tutorial introduction. In: Dzeroski, S., Lavrac, N. (eds.) Relational Data Mining, pp. 160–188. Springer, Heidelberg (2001)
Pvm:parallel virtual machine, http://www.csm.ornl.gov/pvm/
Konstantopoulos, S.K.: A data-parallel version of aleph. In: Proceedings of the Workshop on Parallel and Distributed Computing for Machine Learning, co-located with ECML/PKDD 2003, Dubrovnik, Croatia (September 2003)
Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing 22(6), 789–828 (1996)
Message Passing Interface Forum. MPI: A message-passing interface standard. Technical Report UT-CS-94-230 (1994)
Clare, A., King, R.D.: Data mining the yeast genome in a lazy functional language. In: Dahl, V., Wadler, P. (eds.) PADL 2003. LNCS, vol. 2562, pp. 19–36. Springer, Heidelberg (2002)
Fonseca, N., Silva, F., Camacho, R., Costa, V.S.: Induction with April - A preliminary report. Technical Report DCC-2003-02, DCC-FC & LIACC, Universidade do Porto (2003)
Squyres, J.M., Lumsdaine, A.: A Component Architecture for LAM/MPI. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003. LNCS, vol. 2840, pp. 379–387. Springer, Heidelberg (2003)
Prati, R.C., Flach, P.: Roccer: an algorithm for rule learning based on roc analysis. In: Nineteenth International Joint Conference on Artificial Intelligence, IJCAI 2005 (2005)
Muggleton, S., Feng, C.: Efficient induction in logic programs. In: Muggleton, S. (ed.) Inductive Logic Programming, pp. 281–298. Academic Press, London (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fonseca, N.A., Silva, F., Camacho, R. (2005). Strategies to Parallelize ILP Systems. In: Kramer, S., Pfahringer, B. (eds) Inductive Logic Programming. ILP 2005. Lecture Notes in Computer Science(), vol 3625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11536314_9
Download citation
DOI: https://doi.org/10.1007/11536314_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28177-1
Online ISBN: 978-3-540-31851-4
eBook Packages: Computer ScienceComputer Science (R0)