Skip to main content

CBR for Modeling Complex Systems

  • Conference paper
Case-Based Reasoning Research and Development (ICCBR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3620))

Included in the following conference series:

  • 1240 Accesses

Abstract

This paper describes how CBR can be used to compare, reuse, and adapt inductive models that represent complex systems. Complex systems are not well understood and therefore require models for their manipulation and understanding. We propose an approach to address the challenges for using CBR in this context, which relate to finding similar inductive models (solutions) to represent similar complex systems (problems). The purpose is to improve the modeling task by considering the quality of different models to represent a system based on the similarity to a system that was successfully modeled. The revised and confirmed suitability of a model can become additional evidence of similarity between two complex systems, resulting in an increased understanding of a domain. This use of CBR supports tasks (e.g., diagnosis, prediction) that inductive or mathematical models alone cannot perform. We validate our approach by modeling software systems, and illustrate its potential significance for biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Publishing, New York (2002)

    Google Scholar 

  2. Ames, B.N.: DNA Damage from Micronutrient Deficiencies is Likely to Be a Major Cause of Cancer. Mutat Res. 475(1-2), 7–20 (2001)

    Article  Google Scholar 

  3. Armengol, E., Plaza, E.: Relational Case-based Reasoning for Carcinogenic Activity Prediction. Artificial Intelligence Review 20(1-2), 121–141 (2003)

    Article  Google Scholar 

  4. Barr, T.: Architectural Overview of the Computational Intelligence Testing Tool. In: Proceedings of the Eighth IEEE International Symposium on High Assurance Systems Engineering, pp. 269–270. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  5. Bichindaritz, I.: Memoire: Case Based Reasoning Meets the Semantic Web in Biology and Medicine. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 47–61. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Bogaerts, S., Leake, D.B.: Facilitating CBR for Incompletely-Described Cases: Distance Metrics for Partial Problem Descriptions. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 62–76. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Chakravati, A., Little, P.: Nature, nurture and human disease. Nature 421, 412–414 (2003)

    Article  Google Scholar 

  8. Epel, E.S., Blackburn, E.H., Lin, J., Dhabhar, F.S., Adler, N.E., Morrow, J.D., Cawthon, R.M.: Accelerated Telomere Shortening in Response to Life Stress. Proc. Natl. Acad. Sci. 101(49), 17312–17315 (2004)

    Article  Google Scholar 

  9. Kaput, J., Rodriguez, R.L.: Nutritional Genomics: the Next Frontier in the Postgenomic Era. Physiol. Genomics 16, 166–177 (2004)

    Google Scholar 

  10. Kriete, A., Boyce, K.: Automated tissue analysis – a bioinformatics perspective. Methods Inf. Medicine 1, 32–37 (2005)

    Google Scholar 

  11. Last, M., Friedman, M., Kandel, A.: The Data Mining Approach to Automated Software Testing. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 388–396. ACM Press, New York (2003)

    Chapter  Google Scholar 

  12. Lu, T., Pan, Y., Kao, S.Y., Li, C., Kohane, I., Chan, J., Yankner, B.A.: Gene Regulation and DNA Damage in the Ageing Human Brain. Nature 429(6994), 883–891 (2004)

    Article  Google Scholar 

  13. Malek, M.: Hybrid Approaches for Integrating Neural Networks and Case-Based Reasoning: From Loosely Coupled to Tightly Coupled Models. In: Pal, S.K., Dillon, T.S., Yeung, D.S. (eds.) Soft Computing in Case Based Reasoning, pp. 73–94. Springer, London (2001)

    Google Scholar 

  14. McFarlane, A.C., Yehuda, R., Clark, C.R.: Biologic Models of Traumatic Memories and Post-Traumatic Stress Disorder. The role of neural networks. Psychiatr. Clin. North Am. 25(2), 253–270 (2002)

    Article  Google Scholar 

  15. Park, E.I., Paisley, E.A., Mangian, H.J., Swartz, D.A., Wu, M., O’Morchoe, P.J., Behr, S.R., Visek, W.J., Kaput, J.: Lipid Level and Type Alter Stearoyl CoA Desaturase mRNA Abundance Differently in Mice with Distinct Susceptibilities to Diet-Influenced Diseases. J. Nutr. 127(4), 566–573 (1997)

    Google Scholar 

  16. Proctor, J.M., Weber, R.: Systematically Evolving Configuration Parameters for Computational Intelligence Methods. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 376–381. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Ren, B., Thelen, A.P., Peters, J.M., Gonzalez, F.J., Jump, D.B.: Polyunsaturated Fatty Acid Suppression of Hepatic Fatty Acid Synthase and S14 Gene Expression Does not Require Peroxisome Proliferator-Activated Receptor-α. J. Biol. Chem. 272, 26827–26832 (1997)

    Article  Google Scholar 

  18. Saraph, P., Last, M., Kandel, A.: Test Set Generation and Reduction with Artificial Neural Networks. In: Last, M., Kandel, A., Bunke, H. (eds.) Artificial Intelligence Methods in Software Testing, pp. 101–132. World Scientific, Singapore (2004)

    Chapter  Google Scholar 

  19. Shin, C.K., Park, S.C.: Towards Integration of Memory Based Learning and Neural Networks. In: Pal, S.K., Dillon, T.S., Yeung, D.S. (eds.) Soft Computing in Case Based Reasoning, pp. 95–114. Springer, London (2001)

    Google Scholar 

  20. Smyth, B., Keane, M.T.: Experiments on Adaptation-Guided Retrieval in Case-Based Design. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS (LNAI), vol. 1010, pp. 313–324. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  21. Thomas, R.P., Guigneaux, M., Wood, T., Evers, B.M.: Age-Associated Changes in Gene Expression Patterns in the Liver. J. Gastrointest. Surg. 6(3), 445–453 (2002)

    Article  Google Scholar 

  22. Weber, R., Wu, D.: Knowledge Management for Computational Intelligence Systems. In: Proceedings of the Eighth IEEE International Symposium on High Assurance Systems Engineering, pp. 116–125. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  23. Welle, S., Brooks, A.I., Delehanty, J.M., Needler, N., Thornton, C.A.: Gene Expression Profile of Aging in Human Muscle. Physiol. Genomics 14(2), 149–159 (2003)

    Google Scholar 

  24. Wiemer, J., Schubert, F., Granzow, M., Ragg, T., Fieres, J., Mattes, J., Eils, R.: Informatics United: Exemplary Studies Combining Medical Informatics. Neuroinformatics and Bioinformatics. Methods Inf. Med. 42(2), 126–133 (2003)

    Google Scholar 

  25. Wright, A., Carothers, A.D., Campbell, H.: Gene-environment interactions – the Biobank UK study. Pharmacogenomics J. 2, 75–82 (2002)

    Article  Google Scholar 

  26. Zhao, L.P., Gilbert, S., Defty, C.: E-Diagnosis Using GeneChip Technologies. In: Proceedings of the Fourth International Conference on Advances in Infrastructure for e-Business, e-Education, e-Science, e-Medicine on the Internet. CD-ROM (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weber, R., Proctor, J.M., Waldstein, I., Kriete, A. (2005). CBR for Modeling Complex Systems. In: Muñoz-Ávila, H., Ricci, F. (eds) Case-Based Reasoning Research and Development. ICCBR 2005. Lecture Notes in Computer Science(), vol 3620. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11536406_47

Download citation

  • DOI: https://doi.org/10.1007/11536406_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28174-0

  • Online ISBN: 978-3-540-31855-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics