Skip to main content

Mathematical Modeling of Immune Suppression

  • Conference paper
Artificial Immune Systems (ICARIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3627))

Included in the following conference series:

Abstract

Administered antibodies can suppress humoral immune response. Though there are two hypotheses explaining the suppression, such as the epitope-masking and Fc-receptor mediated suppression, the epitope-masking hypothesis has garnered more supports. To better understand how the immune suppression works and to gain a quantitative and qualitative insight, we developed the first mathematical immune suppression model based on the epitope-masking hypothesis. However, because the hypothesis does not account for the actual B suppression mechanism, the fact that antigen-depletion induces the arrest of proliferating B cells was incorporated to the model. The model can reproduce immune suppression phenomena and complement the epitope-masking hypothesis by suggesting that the key mechanism for the suppression is the arrest of proliferating B cells and it was shown to be feasible. It is expected that our model gives a new insight to researchers in designing experiments for discovering the underlying mechanism of immune suppression.

This work was supported by National Research Laboratory Grant (2005-01450) from the Ministry of Science and Technology. We would like to thank CHUNG Moon Soul Center for BioInformation and BioElectronics and the IBM-SUR program for providing research and computing facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tao, T., Uhr, J.W.: Capacity of pepsin-digested antibody to inhibit antibody formation. Nature 212, 208–209 (1966)

    Article  Google Scholar 

  2. Chilcott, J., Jones, M.L., Wight, J., Forman, K., Wray, J., Beverley, C., Tappenden, P.: A review of the clinical effectiveness and cost-effectiveness of routine anti-D prophylaxis for pregnant women who are rhesus-negative. Health Technol. Assess. 7, iii-62 (2003)

    Google Scholar 

  3. Gottvall, T., Selbing, A.: Alloimmunization during pregnancy treated with high dose intravenous immunoglobulin. Effects on fetal hemoglobin concentration and anti-D concentrations in the mother and fetus. Acta Obstet. Gynecol. Scand. 74, 777–783 (1995)

    Article  Google Scholar 

  4. Karlsson, M.C.I., de Ståhl, T.D., Heyman, B.: IgE-mediated suppression of primary antibody response in vivo. Scand. J. Immunol. 53, 381–385 (2001)

    Article  Google Scholar 

  5. Heyman, B., Dahlström, J., de Ståhl, T.D., Getahun, A., Wernersson, S., Karlsson, M.C.I.: No evidence for a role of FcγRIIB in suppression of in vivo antibody response to erythrocytes by passively administered IgG. Scand. J. Immunol. 53, 331–334 (2001)

    Article  Google Scholar 

  6. Cerottini, J.C., McConahey, P.J., Dixon, F.J.: The immunosuppressive effect of passively administered antibody IgG fragments. J. Immunol. 102, 1008–1015 (1969)

    Google Scholar 

  7. Quintana, I.Z., Silveira, A.V., Möller, G.: Regulation of the antibody response to sheep erythrocytes by monoclonal Ig antibodies. Eur. J. Immunol. 17, 1343–1349 (1987)

    Article  Google Scholar 

  8. Ravetch, J.V., Lanier, L.L.: Immune inhibitory receptors. Science 290, 84–89 (2000)

    Article  Google Scholar 

  9. Coggeshall, K.M.: Inhibitory signaling by B cell FcγRIIb. Curr. Opin. Immunol. 10, 306–312 (1998)

    Article  Google Scholar 

  10. Heyman, B.: Fc-dependent IgG-mediated suppression of the antibody response: fact or artifact? Scand. J. Immunol. 31, 601–607 (1990)

    Article  Google Scholar 

  11. Karlsson, M.C.I., Wernersson, S., de Ståhl, T.D., Gustavsson, S., Heyman, B.: Efficient IgG-mediated suppression of primary antibody responses in Fcγ receptor-deficient mice. Proc. Natl. Acad. Sci. 96, 2244–2249 (1999)

    Article  Google Scholar 

  12. Karlsson, M.C.I., Getahun, A., Heyman, B.: FcγRIIB in IgG-mediated suppression of antibody responses: different impact in vivo and in vitro. J. Immunol. 167, 5558–5564 (2001)

    Google Scholar 

  13. Marino, S., Kirschner, D.E.: The human immune response to Mycobacterium tuberculosis in lung and lymph node. J. Theor. Biol. 227, 463–486 (2004)

    Article  Google Scholar 

  14. Funk, G.A., Barbour, A.D., Hengartner, H., Kalinke, U.: Mathematical model of a virus-neutralizing immunoglobulin response. J. Ttheor. Biol. 195, 41–52 (1998)

    Article  Google Scholar 

  15. Rundell, A., DeCarlo, R., Hogenesch, H., Doerschuk, P.: The humoral immune response to Haemophilus influenzae type b: a mathematical model based on T-zone and germinal center B-cell dynamics. J. Theor. Biol. 194, 341–381 (1998)

    Article  Google Scholar 

  16. Davenport, M.P., Fazou, C., McMichael, A.J., Callan, M.F.C.: Clonal selection, clonal senescence, and clonal succession: the evolution of the T cell response to infection with a persistent virus. J. Immunol. 168, 3309–3317 (2002)

    Google Scholar 

  17. De Boer, R.J., Oprea, M., Antia, R., Murali-Krishna, K., Ahmed, R., Perelson, A.S.: Recruitment times, proliferation, and apoptosis rates during the CD8+ T-cell response to lymphocytic choriomeningitis virus. J. Virol. 75, 10663–10669 (2001)

    Article  Google Scholar 

  18. Wodarz, D., Lloyd, A.L., Jansen, V.A.A., Nowak, M.A.: Dynamics of macrophage and T cell infection by HIV. J. Theor. Biol. 196, 101–113 (1999)

    Article  Google Scholar 

  19. Stafford, M.A., Corey, L., Cao, Y., Daar, E.S., Ho, D.D., Perelson, A.S.: Modeling plasma virus concentration during primary HIV infection. J. Theor. Biol. 203, 285 (2000)

    Article  Google Scholar 

  20. Perelson, A.S.: Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2, 28–36 (2002)

    Article  Google Scholar 

  21. Heyman, B.: Feedback regulation by IgG antibodies. Immunol. Lett. 88, 157–161 (2003)

    Article  Google Scholar 

  22. Rosado, M.M., Freitas, A.A.: The role of the B cell receptor V region in peripheral B cell survival. Eur. J. Immunol. 28, 2685–2693 (1998)

    Article  Google Scholar 

  23. Pittner, B.T., Snow, E.C.: Strength of signal through BCR determines the fate of cycling B cells by regulating the expression of the Bcl-2 family of survival proteins. Cell. Immunol. 186, 55–62 (1998)

    Article  Google Scholar 

  24. Smith, S.H., Reth, M.: Perspectives on the nature of BCR-mediated survival signals. Mol. Cell. 14, 696–697 (2004)

    Article  Google Scholar 

  25. Hodgkin, P.D., Lee, J., Lyons, A.B.: B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med. 184, 277–281 (1996)

    Article  Google Scholar 

  26. Hager, A.-C.M., Ellmark, P., Borrebaeck, C.A.K., Furebring, C.: Affinity and epitope profiling of mouse anti-CD40 monoclonal antibodies. Scand. J. Immunol. 57, 517–524 (2003)

    Article  Google Scholar 

  27. Kierzek, A.M., Zaim, J., Zielenkiewicz, P.: The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. J. Biol. Chem. 276, 8165–8172 (2001)

    Article  Google Scholar 

  28. Perelson, A.S.: Immunology for physicists. Rev. Modern Phys. 69, 1219–1268 (1997)

    Article  Google Scholar 

  29. Maynard, J., Georgiou, G.: Antibody engineering. Annu. Rev. Biomed. Eng. 2, 339–376 (2000)

    Article  Google Scholar 

  30. Giles Jr., R.C., Berman, A., Hildebrandt, P.K., McCaffrey, R.P.: The use of 51Cr for sheep red blood cell survival studies. Proc. Soc. Exp. Biol. Med. 148, 795–798 (1975)

    Google Scholar 

  31. Leanderson, T., Källberg, E., Gray, D.: Expansion, selection and mutation of antigen-specific B-cells in germinal centers. Immunol. Rev. 126, 47–61 (1992)

    Article  Google Scholar 

  32. Bocharov, G.A., Romanyukha, A.A.: Mathematical model of antiviral immune response III. Influenza A virus infection. J. Theor. Biol. 167, 323–360 (1994)

    Article  Google Scholar 

  33. Göran Möller, M.D., Wigzell, H.: Antibody synthesis at the cellular level. J. Exp. Med. 121, 969–989 (1965)

    Article  Google Scholar 

  34. Heyman, B., Wigzell, H.: Immunoregulation by monoclonal sheep erythrocyte-specific IgG antibodies: suppression is correlated to level of antigen binding and not to isotype. J. Immunol. 132, 1136–1143 (1984)

    Google Scholar 

  35. Kettman, J., Dutton, R.W.: An in vitro primary immune response to 2,4,6-trinitrophenyl substituted erythrocytes: response against carrier and hapten. J. Immunol. 104, 1558–1561 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Na, D., Lee, D. (2005). Mathematical Modeling of Immune Suppression. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds) Artificial Immune Systems. ICARIS 2005. Lecture Notes in Computer Science, vol 3627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11536444_14

Download citation

  • DOI: https://doi.org/10.1007/11536444_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28175-7

  • Online ISBN: 978-3-540-31875-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics