Skip to main content

Evaluating Theories of Immunological Memory Using Large-Scale Simulations

  • Conference paper
Artificial Immune Systems (ICARIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3627))

Included in the following conference series:

Abstract

Immunological simulations offer the possibility of performing high-throughput experiments in silico that can predict, or at least suggest, in vivo phenomena. In this paper, we first validate an experimental immunological simulator, developed by the authors, by simulating several theories of immunological memory with known results. We then use the same system to evaluate the predicted effects of a theory of immunological memory. The resulting model has not been explored before in artificial immune systems research, and we compare the simulated in silico output with in vivo measurements. We conclude that the theory appears valid, but that there are a common set of reasons why simulations are a useful support tool, not conclusive in themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, E., Hashish, A.H.: On modelling of immune memory mechanisms (sic). Theory Biosci. 122, 339–342 (2003)

    Google Scholar 

  2. Antia, R., Ganusov, V.V., Ahmed, R.: The role of models in understanding cd8 +  T-cell memory. Nature Review of Immunology 5, 101–111 (2005)

    Article  Google Scholar 

  3. Bernasconi, N.L., Traggiai, E., Lanzavecchia, A.: Maintenance of serological memory by polyclonal activation of human memory B-cells. Science 298, 2199–2202 (2002)

    Article  Google Scholar 

  4. Burnet, F.M.: The clonal selection theory of acquired immunity. Cambridge University Press, Cambridge (1959)

    Google Scholar 

  5. Castiglione, F., Selitser, V., Agur, Z.: The effect of drug schedule on hypersensitive reactions: a study with a cellular automata model of the immune system. In: Preziosi, L. (ed.) Cancer Modelling and Simulation. CRC Press, LLC (2003)

    Google Scholar 

  6. Chao, D.L., Davenport, M.P., Forrest, S., Perelson, A.S.: Stochastic stage-structure modelling of the adaptive immune system. In: Proceedings of the IEEE Computer Society Bioinformatics Conferences, CSB 2003 (2003)

    Google Scholar 

  7. Crotty, S., Felgner, P., Davies, H., Glidewell, J., Villarreal, L., Ahmed, R.: SAP is required for generating long-term humoral immunity. Nature 421, 282–287 (2003)

    Article  Google Scholar 

  8. Farmer, J.D., Packard, N., Perelson, A.: The immune system, adaptation and machine learning. Physica D 22, 187–204 (1986)

    Article  MathSciNet  Google Scholar 

  9. Garrett, S., Robbins, M.J.: Simulating immunological memory. In: Flower, D., Timmis, J. (eds.) Silico Immunology. Springer, Heidelberg (2006) (to be published)

    Google Scholar 

  10. Garrett, S.M.: A paratope is not an epitope: Implications for immune networks and clonal selection. In: 2nd International Conference in Artificial Immune Systems (Edinburgh), September 1-3, pp. 217–228. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Jacob, C., Litorco, J., Lee, L.: Immunity through swarms: Agent-based simulations of the human immune system. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 477–489. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. King, R.D., Garrett, S.M., Coghill, G.M.: On the use of qualitative reasoning to simulate and identify metabolic pathways. Bioinformatics (2005) (to appear) (in print)

    Google Scholar 

  13. Kleinstein, S.H., Louzoun, Y., Shlomchik, M.J.: Estimating hypermutation rates from clonal tree data. The Journal of Immunology 171(9), 4639–4649 (2003)

    Google Scholar 

  14. Kleinstein, S.H., Seiden, P.E.: Simulating the immune system. Computing in Science and Engineering, 69–77 (2000)

    Google Scholar 

  15. Lau, L., Jamieson, B., Somasundraram, T., Ahmed, R.: Cytotoxic T-cell memory without antigen. Nature 369, 648–652 (1994)

    Article  Google Scholar 

  16. Ljung, L.: System identification: Theory for the user, 2nd edn. PRT Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  17. Manz, R.A., Arce, S., Cassese, G., Hauser, A.E., Hiepe, F., Radbruch, A.: Humoral immunity and long-lived plasma cells. Curr. Opin. Immunol. 14, 517 (2002)

    Article  Google Scholar 

  18. Matzinger, P.: Tolerance, danger ad the extended family. Annual Review of Immunology 12, 991–1045 (1994)

    Article  Google Scholar 

  19. McHeyzer-Williams, L.J., McHeyzer-Williams, M.G.: Antigen-specific memory B cell development. Annual Review of Immunology 23, 487–513 (2005)

    Article  Google Scholar 

  20. Meier-Schellersheim, M., Mack, G.: Simmune, a tool for simulating and analyzing immune system behavior (1999), http://www-library.desy.de/

  21. Paul, J.R., Riordan, J.T., Melnick, J.L.: Antibodies to three different antigenic types of poliomyelitis in sera from north alaskan eskimos. Am. J. Hyg. 54, 275–285 (1951)

    MATH  Google Scholar 

  22. Perelson, A.: Modelling viral and immune system dynamics. Nature 2, 28–36 (2002)

    Google Scholar 

  23. Sawyer, W.: The persistance of yellow fever immunity. J. Prev. Med. 5, 413–428 (1931)

    Google Scholar 

  24. Selin, L., Nahill, S., Welsh, R.: Cross-reactivities in memory cytotoxic t-lymphocyte recognition of heterlogous viruses. J. Exp. Med. 179, 1933–1943 (1994)

    Article  Google Scholar 

  25. Slifka, M.K., Antia, R., Whitmire, J.K., Ahmed, R.: Humoral immunity due to long-lived plasma cells. Immunity 8, 363–372 (1998)

    Article  Google Scholar 

  26. Smith, D.J., Forrest, S., Ackley, D.H., Perelson, A.S.: Variable efficacy of repeated annual influenza vaccination. PNAS 96, 14001–14006 (1999)

    Article  Google Scholar 

  27. Tew, J.G., Kosco, M.H., Burton, G.F., Szakal, A.K.: Follicular dendritic cells as accessory cells. Immunological Reviews, 185–212 (1990)

    Google Scholar 

  28. Tough, D., Borrow, P., Sprent, J.: Induction of bystander T-cell proliferation by viruses and type i interferon in vivo. Science 272, 1947–1950 (1996)

    Article  Google Scholar 

  29. Tough, D., Sprent, J.: Turnover of naive- and memory- phenotype cells. J. Exp. Med. 179, 1127–1135 (1994)

    Article  Google Scholar 

  30. Weng, N.-P., Granger, L., Hodes, R.J.: Telomere lengthening and telomerase activation during human B cell differentiation. Proc. Natl. Acad. Sci. 94, 10827–10832 (1997)

    Article  Google Scholar 

  31. Wilson, W., Garrett, S.: Modelling immune memory for prediction and computation. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 343–352. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  32. Wolfram, S.: A new kind of science. Wolfram Media Incorporated (2002)

    Google Scholar 

  33. Yates, A., Chan, C.C.W., Callard, R.E., George, A.J.T., Stark, J.: An approach to modelling in immunology. Briefings in Bioinformatics 2, 245–257 (2001)

    Article  Google Scholar 

  34. Zinkernagel, R.M.: On differences between immunity and immunological memory. Curr. Opin. Immunol. (14), 523–536 (2002)

    Article  Google Scholar 

  35. Zinkernagel, R.M., Bachmann, M.F., Kündig, T.M., Oehen, S., Pirchet, H., Hengartner, H.: On immunological memory. Annual Review of Immunology 14, 333–367 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robbins, M.J., Garrett, S.M. (2005). Evaluating Theories of Immunological Memory Using Large-Scale Simulations. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds) Artificial Immune Systems. ICARIS 2005. Lecture Notes in Computer Science, vol 3627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11536444_15

Download citation

  • DOI: https://doi.org/10.1007/11536444_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28175-7

  • Online ISBN: 978-3-540-31875-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics