Abstract
Recently, the property of unambiguity in alternating Turing machines has received considerable attention in the context of analyzing globally-unique games by Aida et al. [1] and in the design of efficient protocols involving globally-unique games by Crâsmaru et al. [7].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aida, S., Crâsmaru, M., Regan, K., Watanabe, O.: Games with uniqueness properties. Theory of Computing Systems 37(1), 29–47 (2004)
Arvind, V., Kurur, P.: Graph isomorphism is in SPP. In: Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science, pp. 743–750. IEEE Computer Society, Los Alamitos (2002)
Beigel, R.: On the relativized power of additional accepting paths. In: Proceedings of the 4th Structure in Complexity Theory Conference, pp. 216–224. IEEE Computer Society Press, Los Alamitos (1989)
Blass, A., Gurevich, Y.: On the unique satisfiability problem. Information and Control 55(1–3), 80–88 (1982)
Cai, J., Gundermann, T., Hartmanis, J., Hemachandra, L., Sewelson, V., Wagner, K., Wechsung, G.: The boolean hierarchy II: Applications. SIAM Journal on Computing 18(1), 95–111 (1989)
Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. Journal of the ACM 26(1) (1981)
Crâsmaru, M., Glaßer, C., Regan, K.W., Sengupta, S.: A protocol for serializing unique strategies. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 660–672. Springer, Heidelberg (2004)
Crescenzi, P., Silvestri, R.: Sperner’s lemma and robust machines. Computational Complexity 7, 163–173 (1998)
Fortnow, L.: Relativized worlds with an infinite hierarchy. Information Processing Letters 69(6), 309–313 (1999)
Grollmann, J., Selman, A.: Complexity measures for public-key cryptosystems. SIAM Journal on Computing 17(2), 309–335 (1988)
Hartmanis, J., Hemachandra, L.: Robust machines accept easy sets. Theoretical Computer Science 74(2), 217–225 (1990)
Håstad, J.: Computational Limitations of Small-Depth Circuits. MIT Press, Cambridge (1987)
Hemaspaandra, L., Rothe, J.: Unambiguous computation: Boolean hierarchies and sparse Turing-complete sets. SIAM Journal on Computing 26(3), 634–653 (1997)
Ko, K.: On some natural complete operators. Theoretical Computer Science 37(1), 1–30 (1985)
Ko, K.: Relativized polynomial time hierarchies having exactly k levels. SIAM Journal on Computing 18(2), 392–408 (1989)
Ko, K.: Separating the low and high hierarchies by oracles. Information and Computation 90(2), 156–177 (1991)
Lange, K.-J., Rossmanith, P.: Unambiguous polynomial hierarchies and exponential size. In: Proceedings of the 9th Structure in Complexity Theory Conference, pp. 106–115. IEEE Computer Society Press, Los Alamitos (1994)
Niedermeier, R., Rossmanith, P.: Unambiguous computations and locally definable acceptance types. Theoretical Computer Science 194(1–2), 137–161 (1998)
Ogiwara, M., Hemachandra, L.: A complexity theory for feasible closure properties. Journal of Computer and System Sciences 46(3), 295–325 (1993)
Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
Sheu, M., Long, T.: The extended low hierarchy is an infinite hierarchy. SIAM Journal on Computing 23(3), 488–509 (1994)
Sheu, M., Long, T.: UP and the low and high hierarchies: A relativized separation. Mathematical Systems Theory 29(5), 423–449 (1996)
Stockmeyer, L.: The polynomial-time hierarchy. Theoretical Computer Science 3, 1–22 (1976)
Wagner, K.: Alternating machines using partially defined “AND” and “OR”. Technical Report 39,In: Institut für Informatik, Universität Würzburg (January 1992)
Yao, A.: Separating the polynomial-time hierarchy by oracles. In: Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, pp. 1–10 (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Spakowski, H., Tripathi, R. (2005). On the Power of Unambiguity in Alternating Machines. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_12
Download citation
DOI: https://doi.org/10.1007/11537311_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28193-1
Online ISBN: 978-3-540-31873-6
eBook Packages: Computer ScienceComputer Science (R0)