Abstract
The Power Dominating Set problem is a variant of the classical domination problem in graphs: Given an undirected graph G=(V,E), find a minimum P ⊆ V such that all vertices in V are “observed” by vertices in P. Herein, a vertex observes itself and all its neighbors, and if an observed vertex has all but one of its neighbors observed, then the remaining neighbor becomes observed as well. We show that Power Dominating Set can be solved by “bounded-treewidth dynamic programs.” Moreover, we simplify and extend several NP-completeness results, particularly showing that Power Dominating Set remains NP-complete for planar graphs, for circle graphs, and for split graphs. Specifically, our improved reductions imply that Power Dominating Set parameterized by |P| is W[2]-hard and cannot be better approximated than Dominating Set.
Supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether research group PIAF (fixed-parameter algorithms), NI 369/4.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for Dominating Set and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002)
Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation — Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999)
Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997)
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: a Survey. SIAM Monographs on Discrete Mathematics and Applications (1999)
Demaine, E.D., Hajiaghayi, M.: Bidimensionality: New connections between FPT algorithms and PTASs. In: Proc. 16th SODA, pp. 590–601 (2005)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
Feige, U.: A threshold of ln n for approximating Set Cover. Journal of the ACM 45(4), 634–652 (1998)
Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in graphs: applied to electric power networks. SIAM Journal on Discrete Mathematics 15(4), 519–529 (2002)
Kloks, T.: Treewidth: Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)
Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Parameterized power domination complexity. Technical Report AIB-2004-09, In: Department of Computer Science, RWTH Aachen (December 2004)
Kratsch, D.: Algorithms. In: Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.) Domination in Graphs: Advanced Topics, pp. 191–231. Marcel Dekker, New York (1998)
Telle, J.A., Proskurowski, A.: Practical algorithms on partial k-trees with an application to domination-like problems. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1993. LNCS, vol. 709, pp. 610–621. Springer, Heidelberg (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guo, J., Niedermeier, R., Raible, D. (2005). Improved Algorithms and Complexity Results for Power Domination in Graphs. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_16
Download citation
DOI: https://doi.org/10.1007/11537311_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28193-1
Online ISBN: 978-3-540-31873-6
eBook Packages: Computer ScienceComputer Science (R0)