Skip to main content

The Smoothed Analysis of Algorithms

  • Conference paper
Fundamentals of Computation Theory (FCT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3623))

Included in the following conference series:

Abstract

We survey the progress that has been made in the smoothed analysis of algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM 51, 385–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blum, A., Dunagan, J.: Smoothed analysis of the perceptron algorithm for linear programming. In: SODA 2002, pp. 905–914 (2002)

    Google Scholar 

  3. Dunagan, J., Spielman, D.A., Teng, S.H.: Smoothed analysis of interior point algorithms: Condition number (2003), Available at http://arxiv.org/abs/cs.DS/0302011

  4. Sankar, A., Spielman, D.A., Teng, S.H.: Smoothed analysis of interior point algorithms: Condition number (2005), available at http://arxiv.org/abs/cs.NA/0310022

  5. Spielman, T.: Smoothed analysis: Motivation and discrete models. In: WADS: 8th Workshop on Algorithms and Data Structures (2003)

    Google Scholar 

  6. Damerow, V., Sohler, C.: Smoothed number of extreme points under uniform noise. In: Proceedings of the 20th European Workshop on Computational Geometry (2004)

    Google Scholar 

  7. Spielman, D.A., Teng, S.H.: Smoothed analysis of termination of linear programming algorithms. Mathematical Programming 97, 375–404 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Wschebor: Smoothed analysis of kappa(A). COMPLEXITY: Journal of Complexity 20 (2004)

    Google Scholar 

  9. Damerow, V., auf der Heide M.F., Racke, H., Scheideler, C.,Sohler, C.: Smoothed motion complexity. In: ESA: Annual European Symposium on Algorithms (2003)

    Google Scholar 

  10. Becchetti, L., Marchetti-Spaccamela, A., Schafer, G., Vredeveld, T.: Average case and smoothed competitive analysis of the multi-level feedback algorithm. In: FOCS: IEEE Symposium on Foundations of Computer Science, FOCS (2003)

    Google Scholar 

  11. Blum, A., Dunagan, J.: Smoothed analysis of the perceptron algorithm for linear programming. In: Proceedings of the 13th Annual ACM-SIAM Symposium On Discrete Mathematics (SODA-2002), pp. 905–914. ACM Press, New York (2002)

    Google Scholar 

  12. Banderier, C., Mehlhorn, K., Beier, R.: Smoothed analysis of three combinatorial problems. In: Proc. of the 28th International Symposium on Mathematical Foundations of Computer Science (MFCS-2003), Bratislava (2003)

    Google Scholar 

  13. Flaxman, F.: The diameter of randomly perturbed digraphs and some applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 345–356. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Beier, R., Vöcking, B.: Typical properties of winners and losers in discrete optimization. In: Proceedings of the thirty-sixth annual ACM Symposium on Theory of Computing (STOC-2004), pp. 343–352. ACM Press, New York (2004)

    Chapter  Google Scholar 

  15. Beier, V.: Random knapsack in expected polynomial time. JCSS: Journal of Computer and System Sciences 69 (2004)

    Google Scholar 

  16. Sankar, A.: Smoothed Analysis of Gaussian Elimination. PhD thesis, M.I.T. (2004)

    Google Scholar 

  17. Rglin, H., Vcking, B.: Smoothed analysis of integer programming. In: Proc. 11t̂h IPCO, Berlin (2005)

    Google Scholar 

  18. Michael Krivelevich, B.S., Tetali, P.: On smoothed analysis of dense graphs and formulas. In: Proceedings of Random Structuctures and Algorithms (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spielman, D.A. (2005). The Smoothed Analysis of Algorithms. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_2

Download citation

  • DOI: https://doi.org/10.1007/11537311_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28193-1

  • Online ISBN: 978-3-540-31873-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics