Abstract
We survey the progress that has been made in the smoothed analysis of algorithms.
Similar content being viewed by others
References
Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM 51, 385–463 (2004)
Blum, A., Dunagan, J.: Smoothed analysis of the perceptron algorithm for linear programming. In: SODA 2002, pp. 905–914 (2002)
Dunagan, J., Spielman, D.A., Teng, S.H.: Smoothed analysis of interior point algorithms: Condition number (2003), Available at http://arxiv.org/abs/cs.DS/0302011
Sankar, A., Spielman, D.A., Teng, S.H.: Smoothed analysis of interior point algorithms: Condition number (2005), available at http://arxiv.org/abs/cs.NA/0310022
Spielman, T.: Smoothed analysis: Motivation and discrete models. In: WADS: 8th Workshop on Algorithms and Data Structures (2003)
Damerow, V., Sohler, C.: Smoothed number of extreme points under uniform noise. In: Proceedings of the 20th European Workshop on Computational Geometry (2004)
Spielman, D.A., Teng, S.H.: Smoothed analysis of termination of linear programming algorithms. Mathematical Programming 97, 375–404 (2003)
Wschebor: Smoothed analysis of kappa(A). COMPLEXITY: Journal of Complexity 20 (2004)
Damerow, V., auf der Heide M.F., Racke, H., Scheideler, C.,Sohler, C.: Smoothed motion complexity. In: ESA: Annual European Symposium on Algorithms (2003)
Becchetti, L., Marchetti-Spaccamela, A., Schafer, G., Vredeveld, T.: Average case and smoothed competitive analysis of the multi-level feedback algorithm. In: FOCS: IEEE Symposium on Foundations of Computer Science, FOCS (2003)
Blum, A., Dunagan, J.: Smoothed analysis of the perceptron algorithm for linear programming. In: Proceedings of the 13th Annual ACM-SIAM Symposium On Discrete Mathematics (SODA-2002), pp. 905–914. ACM Press, New York (2002)
Banderier, C., Mehlhorn, K., Beier, R.: Smoothed analysis of three combinatorial problems. In: Proc. of the 28th International Symposium on Mathematical Foundations of Computer Science (MFCS-2003), Bratislava (2003)
Flaxman, F.: The diameter of randomly perturbed digraphs and some applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 345–356. Springer, Heidelberg (2004)
Beier, R., Vöcking, B.: Typical properties of winners and losers in discrete optimization. In: Proceedings of the thirty-sixth annual ACM Symposium on Theory of Computing (STOC-2004), pp. 343–352. ACM Press, New York (2004)
Beier, V.: Random knapsack in expected polynomial time. JCSS: Journal of Computer and System Sciences 69 (2004)
Sankar, A.: Smoothed Analysis of Gaussian Elimination. PhD thesis, M.I.T. (2004)
Rglin, H., Vcking, B.: Smoothed analysis of integer programming. In: Proc. 11t̂h IPCO, Berlin (2005)
Michael Krivelevich, B.S., Tetali, P.: On smoothed analysis of dense graphs and formulas. In: Proceedings of Random Structuctures and Algorithms (to appear)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Spielman, D.A. (2005). The Smoothed Analysis of Algorithms. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_2
Download citation
DOI: https://doi.org/10.1007/11537311_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28193-1
Online ISBN: 978-3-540-31873-6
eBook Packages: Computer ScienceComputer Science (R0)