Abstract
The consequences of the worst-case assumption NP = P are very well understood. On the other hand, we only know a few consequences of the average-case assumption “NP is easy on average.” In this paper we establish several new results on the worst-case complexity of Arthur-Merlin games (the class AM) under the average-case complexity assumption “NP is easy on average.”
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arvind, V., Köbler, J.: New lowness results for ZPPNP. Journal of Computer and System Sciences 65(2), 257–277 (2002)
Babai, L.: Trading group theory for randomness. In: Proc. 17th Annual ACM Symp. on Theory of Computing, pp. 421–429 (1985)
Ben-David, S., Chor, B., Goldreich, O., Luby, M.: On the theory of average case complexity. Journal of Computer and System Sciences 44(2), 193–219 (1992)
Balcázar, J., Diaz, J., Gabarró, J.: Structural Complexity I. Springer, Berlin (1988)
Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time simulations unless exptime has publishable proofs. In: Proceedings of the 6th Annual Conference on Structure in Complexity Theory, 1991, pp. 213–219 (1991)
Buhrman, H., Fortnow, L., Pavan, A.: Some results on derandomization. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 212–222. Springer, Heidelberg (2003)
Babai, L., Moran, S.: Arthur-merlin games: a randomized proof system, and a hierarchy of complexity class. Journal of Computer and System Sciences 36(2), 254–276 (1988)
Buhrman, H.: Resource bounded reductions. PhD thesis, University of Amsterdam (1993)
Feige, U., Lund, C.: On the hardness of computing permanent of random matrices. In: Proceedings of 24th Annual ACM Symposium on Theory of Computing, pp. 643–654 (1992)
Gemmel, P., Sudan, M.: Higly resilient correctors for polynomials. Information Processing Letters 43, 169–174 (1992)
Gutfreund, D., Shaltiel, R., Ta-Shma, A.: Uniform hardness vs. randomness tradeoffs for Arth ur-Merlin games. Computational Complexity 12, 85–130 (2003)
Gurevich, Y.: Average case completeness. Journal of Computer and System Sciences 42, 346–398 (1991)
Impagliazzo, R.: A personal view of average-case complexity theory. In: Proceedings of the 10th Annual Conference on Structure in Complexity Theory, pp. 134–147. IEEE Computer Society Press, Los Alamitos (1995)
Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: Proceedings of the 29th ACM Symposium on Theory of Computing, pp. 220–229 (1997)
Köbler, J., Schuler, R.: Average-case intractability vs. worst-case intractability. Information and Computation 190(1), 1–17 (2004)
Klivans, A., van Melkebeek, D.: Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing 31, 1501–1526 (2002)
Levin, L.: Average case complete problems. SIAM Journal of Computing 15, 285–286 (1986)
Lipton, R.: New directions in testing. In: Distributed Computing and Cryptography. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 2, pp. 191–202. American Mathematics Society (1991)
Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudo-random generator. In: 42nd IEEE Symposium on Foundations of Computer Science, pp. 648–657 (2001)
Shaltiel, R., Umans, C.: Pseudorandomness for approximate counting and sampling. Technical Report TR 04-086, ECCC (2004)
Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. In: Proc. 17th ACM Symp. Theory of Computing, pp. 458–463 (1985)
Žák, S.: A Turing machine time hierarchy. Theor. Computer Science 26, 327–333 (1983)
Wang, J.: Average-case computational complexity theory. In: Hemaspaandra, L., Selman, A. (eds.) Complexity Theory Retrospective II, pp. 295–328. Springer, Heidelberg (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pavan, A., Vinodchandran, N.V. (2005). Relations Between Average-Case and Worst-Case Complexity. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_37
Download citation
DOI: https://doi.org/10.1007/11537311_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28193-1
Online ISBN: 978-3-540-31873-6
eBook Packages: Computer ScienceComputer Science (R0)