Skip to main content

Constant Time Generation of Linear Extensions

  • Conference paper
Fundamentals of Computation Theory (FCT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3623))

Included in the following conference series:

Abstract

Given a poset \(\mathcal{P}\), several algorithms have been proposed for generating all linear extensions of \(\mathcal{P}\). The fastest known algorithm generates each linear extension in constant time “on average”. In this paper we give a simple algorithm which generates each linear extension in constant time “in worst case”. The known algorithm generates each linear extension exactly twice and output one of them, while our algorithm generates each linear extension exactly once.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  3. Goldberg, L.A.: Efficient Algorithms for Listing Combinatorial Structures. Cambridge University Press, New York (1993)

    Book  MATH  Google Scholar 

  4. Joichi, J.T., White, D.E., Williamson, S.G.: Combinatorial Gray Codes. SIAM J. on Computing 9, 130–141 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms. CRC Press, Boca Raton (1998)

    Google Scholar 

  6. Kalvin, A.D., Varol, Y.L.: On the Generation of All Topological Sortings. J. of Algorithms 4, 150–162 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kawano, S., Nakano, S.: Constant Time Generation of Set Partitions. IEICE Trans. Fundamentals (2005) (accepted, to appear)

    Google Scholar 

  8. Li, Z., Nakano, S.: Efficient Generation of Plane Triangulations without Repetitions. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 433–443. Springer, Heidelberg (2001)

    Google Scholar 

  9. Li, G., Ruskey, F.: The Advantage of Forward Thinking in Generating Rooted and Free Trees. In: Proc. 10th Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 939–940 (1999)

    Google Scholar 

  10. McKay, B.D.: Isomorph-free Exhaustive Generation. J. of Algorithms 26, 306–324 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nakano, S.: Efficient Generation of Plane Trees. Information Processing Letters 84, 167–172 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nakano, S., Uno, T.: A Simple Constant Time Enumeration Algorithm for Free Trees, IPSJ Technical Report, 2003-AL-91-2 (2003), http://www.ipsj.or.jp/members/SIGNotes/Eng/16/2003/091/article002.html

  13. Pruesse, G., Ruskey, F.: Generating Linear Extensions Fast. SIAM Journal on Computing 23, 373–386 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Read, R.C.: How to Avoid Isomorphism Search When Cataloguing Combinatorial Configurations. Annals of Discrete Mathematics 2, 107–120 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ruskey, F.: Simple Combinatorial Gray Codes Constructed by Reversing Sublists. In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 201–208. Springer, Heidelberg (1993)

    Google Scholar 

  16. Rosen, K.H. (ed.): Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Raton (2000)

    MATH  Google Scholar 

  17. Savage, C.: A Survey of Combinatorial Gray Codes. SIAM Review 39, 605–629 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Stanley, R.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  19. Wilf, H.S.: Combinatorial Algorithms: An Update. SIAM, Philadelphia (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ono, A., Nakano, Si. (2005). Constant Time Generation of Linear Extensions. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_39

Download citation

  • DOI: https://doi.org/10.1007/11537311_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28193-1

  • Online ISBN: 978-3-540-31873-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics