Abstract
Given a poset \(\mathcal{P}\), several algorithms have been proposed for generating all linear extensions of \(\mathcal{P}\). The fastest known algorithm generates each linear extension in constant time “on average”. In this paper we give a simple algorithm which generates each linear extension in constant time “in worst case”. The known algorithm generates each linear extension exactly twice and output one of them, while our algorithm generates each linear extension exactly once.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)
Goldberg, L.A.: Efficient Algorithms for Listing Combinatorial Structures. Cambridge University Press, New York (1993)
Joichi, J.T., White, D.E., Williamson, S.G.: Combinatorial Gray Codes. SIAM J. on Computing 9, 130–141 (1980)
Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms. CRC Press, Boca Raton (1998)
Kalvin, A.D., Varol, Y.L.: On the Generation of All Topological Sortings. J. of Algorithms 4, 150–162 (1983)
Kawano, S., Nakano, S.: Constant Time Generation of Set Partitions. IEICE Trans. Fundamentals (2005) (accepted, to appear)
Li, Z., Nakano, S.: Efficient Generation of Plane Triangulations without Repetitions. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 433–443. Springer, Heidelberg (2001)
Li, G., Ruskey, F.: The Advantage of Forward Thinking in Generating Rooted and Free Trees. In: Proc. 10th Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 939–940 (1999)
McKay, B.D.: Isomorph-free Exhaustive Generation. J. of Algorithms 26, 306–324 (1998)
Nakano, S.: Efficient Generation of Plane Trees. Information Processing Letters 84, 167–172 (2002)
Nakano, S., Uno, T.: A Simple Constant Time Enumeration Algorithm for Free Trees, IPSJ Technical Report, 2003-AL-91-2 (2003), http://www.ipsj.or.jp/members/SIGNotes/Eng/16/2003/091/article002.html
Pruesse, G., Ruskey, F.: Generating Linear Extensions Fast. SIAM Journal on Computing 23, 373–386 (1994)
Read, R.C.: How to Avoid Isomorphism Search When Cataloguing Combinatorial Configurations. Annals of Discrete Mathematics 2, 107–120 (1978)
Ruskey, F.: Simple Combinatorial Gray Codes Constructed by Reversing Sublists. In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 201–208. Springer, Heidelberg (1993)
Rosen, K.H. (ed.): Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Raton (2000)
Savage, C.: A Survey of Combinatorial Gray Codes. SIAM Review 39, 605–629 (1997)
Stanley, R.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997)
Wilf, H.S.: Combinatorial Algorithms: An Update. SIAM, Philadelphia (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ono, A., Nakano, Si. (2005). Constant Time Generation of Linear Extensions. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_39
Download citation
DOI: https://doi.org/10.1007/11537311_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28193-1
Online ISBN: 978-3-540-31873-6
eBook Packages: Computer ScienceComputer Science (R0)