Skip to main content

An Explicit Solution to Post’s Problem over the Reals

  • Conference paper
Fundamentals of Computation Theory (FCT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3623))

Included in the following conference series:

Abstract

In the BSS model of real number computations we prove a concrete and explicit semi-decidable language to be undecidable yet not reducible from (and thus strictly easier than) the real Halting Language. This solution to Post’s Problem over the reals significantly differs from its classical, discrete variant where advanced diagonalization techniques are only known to yield the existence of such intermediate Turing degrees.

Then we strengthen the above result and show as well the existence of an uncountable number of incomparable semi-decidable Turing degrees below the real Halting problem in the BSS model. Again, our proof will give concrete such problems representing these different degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-David, S., Meer, K., Michaux, C.: A note on non-complete problems in NP. Journal of Complexity 16(1), 324–332 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blum, L., Shub, M., Smale, S.: On a Theory of Computation and Complexity over the Real Numbers: NP-Completeness, Recursive Functions, and Universal Machines. Bulletin of the American Mathematical Society(AMS Bulletin), vol. 21, pp. 1–46 (1989)

    Google Scholar 

  3. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1998)

    Google Scholar 

  4. Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  5. Cantor, D.G.: Irreducible Polynomials with Integral Coefficients have Succinct Certificates. J. Algorithms 2, 385–392 (1981)

    Google Scholar 

  6. Chapuis, O., Koiran, P.: Saturation and stability in the theory of computation over the reals. Annals of Pure and Applied Logic 99, 1–49 (1999)

    Google Scholar 

  7. Cucker, F.: The arithmetical hierarchy over the reals. Journal of Logic and Computation 2(3), 375–395 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Friedberg, R.M.: Two recursively enumerable sets of incomparable degrees of unsolvability. Proc. Natl. Acad. Sci. 43, 236–238 (1957)

    Google Scholar 

  9. Hamkins, J.D., Lewis, A.: Post’s Problem for supertasks has both positive and negative solutions. Archive for Mathematical Logic 4(6), 507–523 (2002)

    Article  MathSciNet  Google Scholar 

  10. Herman, G.T., Isard, S.D.: Computability over arbitrary fields. J. London Math. Soc. 2, 73–79 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hogarth, M.L.: Non-Turing Computers and Non-Turing Computability. Proc. Philosophy of Science Association 1, 126–138 (1994)

    Google Scholar 

  12. Kieu, T.: Hypercomputation with Quantum Adiabatic Processes. Theoretical Computer Science 317, 93–104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ladner, R.: On the structure of polynomial time reducibility. Journal of the ACM 22, 155–171 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lang, S.: Algebra, 3rd edn. Addison-Wesley, Reading (1993)

    MATH  Google Scholar 

  15. Macon, N., Dupree, D.E.: Existence and Uniqueness of Interpolating Rational Functions. The American Mathematical Monthly 69, 751–759 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  16. Malajovich, G., Meer, K.: On the Structure of NPC. SIAM Journal on Computing 28(1), 27–35 (1999)

    Article  MathSciNet  Google Scholar 

  17. Meer, K.: Real Number Models under Various Sets of Operations. J. Complexity 9, 366–372 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Post, E.L.: Recursively enumerable sets of positive integers and their decision problems. Bull. Amer. Math. Soc. 50, 284–316 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  20. Schöning, U.: A uniform approach to obtain diagonal sets in complexity classes. Theoretical Computer Science 18, 95–103 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)

    Google Scholar 

  22. Yao, A.C.-C.: Classical Physics and the Church-Turing Thesis. J. ACM 50(1), 100–105 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meer, K., Ziegler, M. (2005). An Explicit Solution to Post’s Problem over the Reals. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_41

Download citation

  • DOI: https://doi.org/10.1007/11537311_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28193-1

  • Online ISBN: 978-3-540-31873-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics