Skip to main content

Bounds on the Power of Constant-Depth Quantum Circuits

  • Conference paper
Fundamentals of Computation Theory (FCT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3623))

Included in the following conference series:

  • 958 Accesses

Abstract

We show that if a language is recognized within certain error bounds by constant-depth quantum circuits over a finite family of gates, then it is computable in (classical) polynomial time. In particular, for 0<εδ≤ 1, we define BQNC \(^{0}_{\epsilon ,\delta}\) to be the class of languages recognized by constant depth, polynomial-size quantum circuits with acceptance probability either <ε (for rejection) or ≥δ (for acceptance). We show that BQNC \(^{0}_{\epsilon ,\delta} \subseteq \) P, provided that 1 – δ ≤ 2− 2d(1–ε), where d is the circuit depth.

On the other hand, we adapt and extend ideas of Terhal & DiVincenzo [1] to show that, for any family \(\mathcal{F}\) of quantum gates including Hadamard and CNOT gates, computing the acceptance probabilities of depth-five circuits over \(\mathcal{F}\) is just as hard as computing these probabilities for arbitrary quantum circuits over \(\mathcal{F}\). In particular, this implies that NQNC 0 = NQACC = NQP = coC = P , where NQNC 0 is the constant-depth analog of the class NQP. This essentially refutes a conjecture of Green et al. that NQACCTC 0 [2].

This work was supported in part by the National Security Agency (NSA) and Advanced Research and Development Agency (ARDA) under Army Research Office (ARO) contract numbers DAAD 19-02-1-0058 (for S. Homer, and F. Green) and DAAD 19-02-1-0048 (for S. Fenner and Y. Zhang).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Terhal, B.M., DiVincenzo, D.P.: Adaptive quantum computation, constant depth quantum circuits and arthur-merlin games. Quantum Information and Computation 4, 134–145 (2004)

    MATH  MathSciNet  Google Scholar 

  2. Green, F., Homer, S., Moore, C., Pollett, C.: Counting, fanout and the complexity of quantum ACC. Quantum Information and Computation 2, 35–65 (2002)

    MathSciNet  Google Scholar 

  3. Aaronson, S.: Quantum computing, postselection, and probabilistic polynomialtime, Manuscript (2004)

    Google Scholar 

  4. Moore, C., Nilsson, M.: Parallel quantum computation and quantum codes. SIAM Journal on Computing 31, 799–815 (2002)

    Article  MathSciNet  Google Scholar 

  5. Cleve, R., Watrous, J.: Fast parallel circuits for the quantum Fourier transform. In: Proceedings of the 41st IEEE Symposium on Foundations of Computer Science, pp. 526–536 (2000)

    Google Scholar 

  6. Moore, C.: Quantum circuits: Fanout, parity, and counting, Manuscript (1999)

    Google Scholar 

  7. Ajtai, M.: Σ1 1 formulæ on finite structures. Annals of Pure and Applied Logic 24, 1–48 (1983)

    Google Scholar 

  8. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial time hierarchy. Mathematical Systems Theory 17, 13–27 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Razborov, A.A.: Lower bounds for the size of circuits of bounded depth with basis {&, ⊕}. Math. Notes Acad. Sci. USSR 41, 333–338 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In: Proceedings of the 19th ACM Symposium on the Theory of Computing, pp. 77–82 (1987)

    Google Scholar 

  11. Høyer, P., Śpalek, R.: Quantum circuits with unbounded fan-out. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 234–246. Springer, Heidelberg (2003)

    Google Scholar 

  12. Siu, K.Y., Bruck, J., Kailath, T., Hofmeister, T.: Depth efficient neural networks for division and related problems. IEEE Transactions on Information Theory 39, 946–956 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Letters to Nature 402, 390–393 (1999)

    Article  Google Scholar 

  14. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky- Rosen channels. Physical Review Letters 70, 1895–1899 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fenner, S., Green, F., Homer, S., Pruim, R.: Determining acceptance possibility for a quantum computation is hard for the polynomial hierarchy. Proceedings of the Royal Society London A 455, 3953–3966 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Valiant, L.: The complexity of computing the permanent. Theoretical Computer Science 8, 189–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  18. Wagner, K.: The complexity of combinatorial problems with succinct input representation. Acta Informatica 23, 325–356 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Toda, S., Ogiwara, M.: Counting classes are at least as hard as the polynomial-time hierarchy. SIAM Journal on Computing 21, 316–328 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  21. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal on Computing 26, 1411–1473 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computation. SIAM Journal on Computing 26, 1510–1523 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Adleman, L.M., DeMarrais, J., Huang, M.D.A.: Quantum computability. SIAM Journal on Computing 26, 1524–1540 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yamakami, T., Yao, A.C.C.: NQPC= co-C=P. Information Processing Letters 71, 63–69 (1999)

    Google Scholar 

  25. Beigel, R., Reingold, N., Spielman, D.: PP is closed under intersection. In: Proceedings of the 23rd annual ACM Symposium on Theory of Computing, pp. 1–9 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fenner, S., Green, F., Homer, S., Zhang, Y. (2005). Bounds on the Power of Constant-Depth Quantum Circuits. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_5

Download citation

  • DOI: https://doi.org/10.1007/11537311_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28193-1

  • Online ISBN: 978-3-540-31873-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics