
Deterministic Automata on Unranked Trees

Julien Cristau1 Christof Löding2 Wolfgang Thomas2

1 LIAFA, Université Paris VII, France
2 RWTH Aachen, Germany

Abstract. We investigate bottom-up and top-down deterministic au-
tomata on unranked trees. We show that for an appropriate definition of
bottom-up deterministic automata it is possible to minimize the number
of states efficiently and to obtain a unique canonical representative of
the accepted tree language. For top-down deterministic automata it is
well known that they are less expressive than the non-deterministic ones.
By generalizing a corresponding proof from the theory of ranked tree au-
tomata we show that it is decidable whether a given regular language
of unranked trees can be recognized by a top-down deterministic au-
tomaton. The standard deterministic top-down model is slightly weaker
than the model we use, where at each node the automaton can scan the
sequence of the labels of its successors before deciding its next move.

1 Introduction

Finite automata over finite unranked trees are a natural model in classical lan-
guage theory as well as in the more recent study of XML document type defi-
nitions. In the theory of context-free languages, unranked trees (i.e. trees with
finite but unbounded branching) arise as derivation trees of grammars in which
the right-hand sides are regular expressions rather than single words ([BB02]).
The feature of finite but unbounded branching appears also in the tree repre-
sentation of XML documents.

The generalization of tree automata from the case of ranked label alphabets
to the unranked case is simple: A transition e.g. of a bottom-up automaton is
of the form (L, a, q), allowing the automaton to assume state q at an a-labeled
node with say n successors if the sequence q1 . . . qn of states reached at the
roots of the n subtrees of these successors belongs to L. Most core results of
tree automata theory (logical closure properties, decidability of non-emptiness,
inclusion, and equivalence) are easily transferred to this framework of “unranked
tree automata” and “regular sets of unranked trees”.

For certain other results of classical tree automata theory, however, such a
transfer is less obvious and does not seem to be covered by existing work. In
the present paper we deal with two such questions: the problem of automaton
minimization, and the definition and expressive power of top-down automata (i.e.
automata working from the root to the leaves, more closely following the pattern
of XML query processing than the bottom-up version). We confine ourselves to
the question of tree language recognition; so we do not address models like the
query automata of [NS02] or the transducers of [MSV03].

Dagstuhl Seminar Proceedings 05061
Foundations of Semistructured Data
http://drops.dagstuhl.de/opus/volltexte/2005/228

The minimization problem has be reconsidered for the unranked case because
two types of automata are involved: the finite tree automatonA used for building
up run trees (on given input trees), and the finite word automata BL accepting
the languages L which occur in the A-transitions. The A-states are the input
letters to the BL, and the BL-states are needed to produce the “next A-state”
(in bottom-up mode). It is not clear a priori how and in which order to minimize
these automata. Using a natural definition of BL-automaton (which depends on
a label a and produces an A-state as output), we show in Section 3 below that
a simultaneous and efficient minimization of A and the BL is possible, moreover
resulting in a minimal tree automaton which is unique up to isomorphism.

For the question of deterministic top-down processing of input trees, we start
with well known results of [Vir80,GS84] on the ranked case. The generalization
to the unranked case requires introducing a finite automaton which proceeds
from state q at an a-labeled node deterministically to new states q1 . . . qn at the
n successor nodes. A natural option is to provide the numbers n and i as input
in order to compute qi. A second option, closer to the idea of XML document
processing, is to provide as inputs the sequence a1 . . . an of successor labels and
the position i. In both cases, the simple approach to define transitions via a finite
table does not suffice, instead one has to introduce appropriate transducers to
implement transitions. In Section 4, we present such transducers (in the form of
bimachines [Eil74,Ber79]), introduce the corresponding top-down tree automata,
and show that for a regular set of unranked trees one can decide whether it
is recognizable by either of these top-down tree automata. For the technical
presentation we focus on the second option mentioned above. The main point
is an appropriate definition of “path language”, recording the possible paths of
trees in a given tree language; the derived notion of “path-closed” tree language
then captures those tree languages which are recognizable deterministically in
top-down mode.

The paper starts (in Section 2) with some technical preliminaries, gives in
Section 3 the results on minimization, in Section 4 the study of top-down au-
tomata, and closes in Section 5 with some pointers to current and future work.

We thank S. Abiteboul, F. Neven, and Th. Schwentick for comments on a
preliminary version of this work.

2 Automata on Unranked Trees

In this section we define unranked trees and different models of automata running
on such trees. In the following Σ always denotes a finite alphabet, i.e., a finite
set of symbols, N denotes the set of natural numbers, and N>0 denotes the set
of positive natural numbers. For a set X we denote by X∗ the set of all finite
words over X . The empty word is denoted by ε.

A tree domain D is a subset of N
∗
>0 satisfying the following conditions:

– If x ∈ D, then each prefix of x is also an element of D.
– If xi ∈ D for x ∈ N

∗
>0 and i ∈ N>0, then xj ∈ D for all j with 1 ≤ j ≤ i.

2

An unranked tree t over Σ (simply tree in the following) is a mapping t :
domt → Σ with a finite tree domain domt. The elements of domt are called the
nodes of t. For x ∈ domt we call nodes of the form xi ∈ domt with i ∈ N>0 the
successors of x (where xi is the ith successor). As usual, a leaf of t is a node
without successor. If the root of t is labeled by a, i.e., t(ε) = a, and if the root
has k successors at which the subtrees t1, . . . , tk are rooted, then we denote this
by t = a(t1 · · · tk). The set of all unranked trees over Σ is denoted by TΣ . For
a ∈ Σ we denote by T a

Σ the set of all trees from TΣ whose root is labeled by a.

A non-deterministic bottom-up tree automaton (↑NTA) A = (Q, Σ, ∆, F)
consists of a finite set Q of states, a finite input alphabet Σ, a finite set ∆ ⊆
Reg(Q)×Σ×Q of transitions (Reg(Q) denotes the set of regular languages over
Q), and a set F ⊆ Q of final states.

A run of A on a tree t is a function ρ : domt → Q with the following
property: For each x ∈ domt with n successors x1, . . . , xn there is a transition
(L, t(x), ρ(x)) ∈ ∆ such that the word ρ(x1) · · · ρ(xn) is in L. If x is a leaf, this
means that there must be a transition (L, t(x), ρ(x)) ∈ ∆ with ε ∈ L. If the root
of ρ is labeled with q, then we write t →A q. For Q′ ⊆ Q we write t →A Q′ if
t→A q for some q ∈ Q′. We call ρ accepting if ρ(ε) ∈ F and say that t is accepted
by A if there is an accepting run of A on t. The language T (A) accepted by A
is T (A) := {t ∈ TΣ | A accepts t}. The regular languages of unranked trees are
those that can be accepted by ↑NTAs.

In the definition of ↑NTA we did not specify how the regular languages used
in the transitions are given. First of all, note that it is not necessary to have
two transitions (L1, a, q) and (L2, a, q) because these can be merged into a single
transition (L1 ∪L2, a, q). Usually, one then assumes that the transition function
is given by a set of regular expressions or non-deterministic finite automata
defining for each q ∈ Q and a ∈ Σ the language La,q with (La,q, a, q) ∈ ∆.

One can also define non-deterministic tree automata that work in a top-down
fashion. For this purpose it is sufficient to view the final states as initial states.
Thus, for non-deterministic automata it does not make any difference whether we
consider top-down or bottom-up automata. In contrast, to obtain a deterministic
model with the same expressive power as the corresponding non-deterministic
model one has to consider bottom-up automata as introduced in the following.
Deterministic top-down automata are treated in Section 4.

The standard definition of deterministic bottom-up tree automata (↑DTA)
is obtained by imposing a semantic restriction on the set of transitions: it is re-
quired that for each letter a and all states q1, q2 if there are transitions (L1, a, q1)
and (L2, a, q2), then L1∩L2 = ∅. Each ↑NTA can be transformed into an equiv-
alent ↑DTA using a standard subset construction [BKWM01].

Here, we do not use this semantic approach to define determinism but re-
quire a representation of the transition function that only allows the definition
of deterministic automata. Besides the advantage of not needing any semantic
restrictions, our model is obtained in a natural way when applying the subset
construction to ↑NTAs. Since minimization is often applied to reduce the result

3

of a determinization construction, the choice of this model is a natural one for
our purposes.

A ↑DTA A is given by a tuple A = (Q, Σ, (Da)a∈Σ , F) with Q, Σ, and F as
for ↑NTA, and deterministic finite automata Da with output defining the tran-
sitions of A. Each of the Da (with a ∈ Σ) is of the form Da = (Sa, Q, sin

a , δa, λa)
with a finite set Sa of states, input alphabet Q, initial state sin

a , transition func-
tion δa : Sa × Q → Sa, and output function λa : Sa → Q. As usual, we define
δ∗a : Sa ×Q∗ → Sa by δ∗a(s, ε) = s and δ∗a(s, uq) = δa(δ∗a(s, u), q).

Such a ↑DTA can be transformed into the standard representation as follows.
For each q ∈ Q and a ∈ Σ let La,q = {w ∈ Q∗ | λa(δ∗a(sin

a , w)) = q}. Then, the set
of transitions defined by the family (Da)a∈Σ consists of all transitions (La,q, a, q).

Example 1. For Σ = {∧,∨, 0, 1} we consider trees whose leaves are labeled by 0
or 1, and whose inner nodes are labeled by ∧ or ∨. Such trees can be evaluated
in a natural way to 0 or 1. Let T be the language of all trees that evaluate to 1.
We define a ↑DTA for T with state set Q = {q0, q1, q⊥}, final states F = {q1},
and automata Da, a ∈ Σ, as depicted in Figure 1. An entry s | q in the picture
means that the output at state s is q, e.g., λ∧(s

in
∧) = q⊥. For readability we have

omitted the transitions leading to rejection. All missing transitions are assumed
to lead to a sink state of the respective automaton with output q⊥.

D0 : sin
0 | q0 D1 : sin

1 | q1

D∧ : sin
∧ | q⊥

q1

q0

s1
∧ | q1

q1

q0
s2
∧ | q0

q0,q1

D∨ : sin
∨ | q⊥ q0

q1

s1
∨ | q0

q0

q1
s2
∨ | q1

q0,q1

Fig. 1. A ↑DTA recognizing all ∧-∨-trees that evaluate to 1

For complexity considerations we define the size of A as |A| = |Q| ·
∑

a∈Σ |Sa|.
This is a reasonable measure since the sizes of the transition functions of the
automata Da are of order |Q| · |Sa|.

3 Minimization of Deterministic Bottom-Up Automata

In this section A always denotes a ↑DTA A = (Q, Σ, (Da)a∈Σ , F) with Da =
(Sa, Q, sin

a , δa, λa) for each a ∈ Σ. Furthermore, we let S =
⋃

a∈Σ Sa.
When interested in minimization it is necessary to ensure that all states (from

Q and S) are reachable. Note that there is an interdependence since a state in Q

4

is reachable if it is the output of some reachable state in S and a state s ∈ S is
reachable if it can be reached by some input consisting of reachable states from
Q.

Lemma 1. The set of reachable states of a given ↑DTA can be computed in
linear time.

Proof. The algorithm maintains a set S ′ of reachable states from S and a set Q′

of reachable states from Q. These sets are initialized to S ′ = {sin
a | a ∈ Σ} and

Q′ = {λa(sin
a) | a ∈ Σ}. Starting from S ′ the the transition graphs of the Da

are traversed in a breadth-first manner using only the transition labels from Q′.
Whenever we encounter a state s ∈ Sa with q = λa(s) /∈ Q′, then q is added to
Q′ and the targets of the transitions with label q departing from those states in
S′ that have already been processed by the breadth first search are added to S ′.
This algorithm traverses each transition of the Da at most once and hence can
be implemented to run in linear time. ut

From now on we assume that all states in A are reachable. For each q ∈ Q we
define Tq = {t ∈ TΣ | t→A q}, and for each a ∈ Σ and s ∈ Sa we define

Ts = {a(t1 · · · tk) | ∃q1, . . . , qk : ti ∈ Tqi
and δ∗a(sin

a , q1 · · · qk) = s}.

If all states are reachable, then these sets are non-empty, and we can fix for each
q ∈ Q some tq ∈ Tq and for each s ∈ S some ts ∈ Ts.

To prove the existence of a unique minimal ↑DTA for a regular tree language
we introduce two equivalence relations in the spirit of Nerode’s congruence for
word languages. To this aim we first define two different kinds of concatenations
for trees.

The set TΣ,X of pointed trees over Σ contains all trees t from TΣ∪{X} (for a
new symbol X) such that exactly one leaf of t is labeled by X . For t ∈ TΣ,X and
t′ ∈ TΣ ∪ TΣ,X we denote by t ◦ t′ the tree obtained from t by replacing the leaf
labeled X by t′. For T ⊆ TΣ the equivalence relation ∼T ⊆ TΣ × TΣ is defined
by

t1 ∼T t2 iff ∀t ∈ TΣ,X : t ◦ t1 ∈ T ⇔ t ◦ t2 ∈ T.

This relation is called ‘top-congruence’ in [BKWM01]. In the case of ranked trees
it is the natural extension of Nerode’s congruence from words to trees. However,
as already noted in [BKWM01], for T being regular in the unranked setting it
is not sufficient that ∼T is of finite index. One also has to impose a condition
that ensures the regularity of the ‘horizontal languages’ that are used in the
transition function. For this we need another concatenation operation on trees.

For trees t = a(t1 . . . tk) and t′ = a(t′1 · · · t
′
`) let t � t′ = a(t1 · · · tkt′1 · · · t

′
`).

The equivalence relation
→
∼T is defined for all a ∈ Σ and t1, t2 ∈ T a

Σ by

t1
→
∼T t2 iff ∀t ∈ T a

Σ : t1 � t ∼T t2 � t

To simplify notation we write [t] for the ∼T -class of t and [t]→ for the
→
∼T -class

of t. If T is accepted by a ↑DTA A, then A has to distinguish trees that are not
equivalent. This is expressed in the following lemma.

5

Lemma 2. If A accepts the language T , then Tq ⊆ [tq] for each q ∈ Q and
Ts ⊆ [ts]→ for each a ∈ Σ and s ∈ Sa.

The above lemma implies that
→
∼T is of finite index if T is regular. On the other

hand, if
→
∼T is of finite index, then this ensures the regularity of what is called

‘local views’ in [BKWM01] and hence T is regular. In the following we show that
the equivalence classes of ∼T and

→
∼T can be used to define a canonical minimal

↑DTA AT for T . The equivalence classes of ∼T correspond to the states of the
tree automaton and the equivalence classes of

→
∼T restricted to T a

Σ correspond
to the states of the automaton defining the transitions for label a.

For the definition of AT we need the following lemma, which states that
→
∼T

refines ∼T and that
→
∼T is a right-congruence (w.r.t. �). The proof of this lemma

is straightforward.

Lemma 3. (a) If t1
→
∼T t2, then t1 ∼T t2 for all t1, t2 ∈ TΣ.

(b) If t1
→
∼T t2 and t′1 ∼T t′2, then t1 � a(t′1)

→
∼T t2 � a(t′2) for all t1, t2 ∈ T a

Σ

and all t′1, t
′
2 ∈ TΣ.

The following theorem states the existence of a unique (up to isomorphism)
↑DTA for every regular language T of unranked trees. The notion of homo-
morphism that we use in the statement of the theorem is the natural one: A
homomorphism from A1 = (Q1, Σ, (D1

a)a∈Σ , F1) to A2 = (Q2, Σ, (D2
a)a∈Σ , F2)

is a surjection that maps the states from Q1 to states from Q2 while respecting
final and non-final states, and maps for each a ∈ Σ the set S1

a to S2
a (Si

a denotes
the state set of Di

a) while respecting the initial state, the transition function,
and the output function.

Theorem 1. For every regular T ⊆ TΣ there is a unique minimal ↑DTA AT

and for each ↑DTA A recognizing T there is a homomorphism that maps A to
AT .

Proof. Define AT = (QT , Σ, (DT
a)a∈Σ , FT) by QT = TΣ/∼T , F = {[t] | t ∈ T},

and DT
a = (ST

a , QT , [a]→, δT
a , λT

a) with ST
a = T a

Σ/
→
∼T , δT

a ([t]→, [t′]) = [t� a(t′)]→
for t ∈ T a

Σ and t′ ∈ TΣ , and λT
a ([t]→) = [t]. Using Lemma 3 one can easily show

that t→AT
[t] and hence T (AT) = T .

If A is some ↑DTA for T , then it is not difficult to see that mapping each
state q ∈ Q to [tq] and each s ∈ S to [ts]→ defines a homomorphism from A to
AT . ut

We now give an algorithm that computes this minimal ↑DTA AT starting from
any automaton A for T . This minimization procedure is an extension of the
classical minimization procedure for finite automata (cf. [HU79]), i.e., we define
equivalence relations on the state sets Q and S that correspond to the relations
∼T and

→
∼T and obtain the minimal automaton by merging equivalent states.

For q1, q2 ∈ Q let q1 ∼A q2 iff (t ◦ tq1 →A F ⇔ t ◦ tq2 →A F) for all t ∈ TΣ,X .
For a ∈ Σ and s1, s2 ∈ Sa let s1 ∼A s2 iff λa(δ∗a(s1, u)) ∼A λa(δ∗a(s2, u)) for all
u ∈ Q∗. The following lemma states that it is indeed possible to group equivalent
states into a single state.

6

Lemma 4. If q1 ∼A q2 for q1, q2 ∈ Q and s1 ∼A s2 for s1, s2 ∈ Sa, then
δa(s1, q1) ∼A δa(s2, q2).

For q ∈ Q and s ∈ S we denote by [q] and [s] the ∼A-class of q and s, respectively.
The reduced automaton A∼ is defined as A∼ = (Q/ ∼A, Σ, (D∼a)a∈Σ , F/ ∼A
) with D∼a = (Sa/ ∼A, Q/ ∼A, [sin

a], δ∼a , λ∼a) and δ∼a ([s], [q]) = [δa(s, q)] and
λ∼a ([s]) = [λa(s)]. Lemma 4 ensures that the definitions of δa and λa do not
depend on the chosen representatives of the equivalence classes.

Theorem 2. If A is an automaton for the language T , then AT and A∼ are
isomorphic.

Proof. From the definitions of ∼A, ∼T , and
→
∼T one can easily deduce that

q1 ∼A q2 iff [tq1] = [tq2], and s1 ∼A s2 iff [ts1]→ = [ts2]→. This implies that in
the reduced automaton every state [q] can be identified with [tq] and each state
[s] can be identified with [ts]→. ut

Hence, to compute the unique minimal automaton for T it suffices to compute
the relation ∼A. The algorithm shown in Figure 2 marks all pairs of states that
are not in the relation ∼A.

Algorithm: Equivalent-States

INPUT: ↑DTA A = (Q, Σ, (Da)a∈Σ, F) with Da = (Sa, Q, sin
a , δa, λa)

1. Mark each pair (q1, q2) ∈ Q2 with q1 ∈ F ⇔ q2 /∈ F .
2. repeat

3. For each a ∈ Σ mark (s1, s2) ∈ S2
a if (λa(s1), λa(s2)) is marked.

4. For each a ∈ Σ and q ∈ Q mark (s1, s2) ∈ S2
a if (δa(s1, q), δa(s2, q)) is marked.

5. For each a ∈ Σ and q ∈ Q mark (q1, q2) ∈ Q2 if (δa(s, q1), δa(s, q2)) is marked.
6. until no new pairs are marked
7. Output R = {(q1, q2) ∈ Q2 | (q1, q2) not marked}

∪{(s1, s2) ∈ S2
a | a ∈ Σ(s1, s2) not marked}

Fig. 2. An algorithm to compute equivalent states in a given ↑DTA

Theorem 3. The algorithm Equivalent-States from Figure 2 computes for
input A the relation ∼A.

Proof. We first show that all pairs marked by the algorithm are non-equivalent.
For the pairs marked in lines 1,3, and 4 this is a direct consequence of the defi-
nition of ∼A. For pairs (q1, q2) marked in line 5 the claim follows from Lemma 4
applied to q1, q2, and s = s1 = s2.

To show that all pairs of non-equivalent states are marked, we look at the
minimal ‘size’ of a witness that separates the two states. For the states from Q
these witnesses are pointed trees. The size we are interested in is the depth of
the leaf labeled by X , i.e., for t ∈ TΣ,X we define |t|X to be the depth of X in t.

7

For q1, q2 ∈ Q and n ∈ N we define q1 ∼n q2 iff (t◦ tq1 →A F ⇔ t◦ tq2 →A F) for
all t ∈ TΣ,X with |t|X ≤ n, For s1, s2 ∈ Sa we let s1 ∼n s2 iff λa(δ∗a(s1, u)) ∼n

λa(δ∗a(s2, u)) for all ∀u ∈ Q∗. Using this definition one can show that a pair
of states is marked in the ith iteration of the loop iff i is the minimal number
such that the states are not in the relation ∼i. For this we assume that each of
the lines 3–5 is executed as long as there are pairs that can be marked in the
respective line. ut

For readability we have used the technique of marking pairs of non-equivalent
states to compute the relation ∼A. A concrete implementation of the algorithm
should rather use the technique of refining an equivalence relation represented
by its equivalence classes. This technique is used to improve the complexity of
minimization of finite automata on words [Hop71] and can also be applied to
the minimization of automata on finite ranked trees (cf. [CDG+97]). Using this
technique one can in any case obtain an algorithm running in quadratic time.
A more detailed analysis on whether this bound can be improved is still to be
done.

Theorem 4. Given a ↑DTA A one can compute in quadratic time the minimal
↑DTA that is equivalent to A.

4 Deterministic Top-Down Automata

As in the case of ranked trees, deterministic automata that work in a top-down
fashion are not as expressive as nondeterministic ones. In this section we intro-
duce such a model and show that it is decidable whether a given regular tree
language can be accepted by a deterministic top-down automaton. When directly
adapting the definition of top-down deterministic automata on ranked trees, one
obtains a model that, depending on its current state, the current label, and the
number of successors of the current node, decides which states it sends to the
successors. Here, we have decided to make the model a bit more expressive by
allowing for a transition to take into account not only the number of successors
but also their labeling. All the results from this section can be adapted in a
straightforward way to the weaker model as described above.

To define the transitions as just mentioned we use a certain kind of transducer
to convert the sequence of labels of the successors of a node into a sequence of
states of the tree automaton. Since this transducer should have information on
the whole successor sequence before deciding which state to put at a certain
successor we use the formalism of bimachines (cf. [Eil74,Ber79]).

A bimachine is of the form B = (Σ, Γ,
−→
B ,
←−
B , f), where

−→
B = (

−→
S , Σ, s→0 ,

−→
δ)

and
←−
B = (

←−
S , Σ, s←0 ,

←−
δ) are deterministic finite automata over Σ (without final

states) and f :
−→
S ×Σ ×

←−
S → Γ is the output function.

Given a word u ∈ Σ∗ consisting of k letters u = a1 · · · ak, B produces an
output v = b1 · · · bk over Γ that is defined as follows. Let s→0 s→1 · · · s

→
k be the

run of
−→
B on a1 · · · ak and let s←0 s←1 · · · s

←
k be the run of

←−
B on the reversed input

8

ak · · ·a1. Then the ith output letter bi is given by bi = f(s→i , ai, s
←
k−i+1). This

definition is illustrated in Figure 3.

−→
B : s→0 s→1 s→2 · · · s→k−1 s→k

a1 a2 · · · ak

s←k s←k−1 s←k−2 · · · s←1 s←0 :
←−
B

b1 b2 · · · bk

Fig. 3. Computation of a bimachine

We denote the function computed by B by fB. One should note that using
bimachines we remain inside the domain of regular languages in the sense that
fB(L) for a regular language L is again regular. For further results on bimachines
see, e.g., [Ber79] or [Eil74].

A deterministic top-down tree automaton (↓DTA) uses such bimachines for
its transitions. It is of the form A = (Q, Σ, fin, (Bq)q∈Q, F), where Q is finite set
of states, Σ is the input alphabet, fin : Σ → Q is the initial function, F ⊆ Q is
a set of final states, and each Bq is a bimachine.

A run of A on a tree t is mapping ρ : domt → Q such that ρ(ε) = fin(t(ε)) and
for each node x of t with n > 0 successors x1, . . . , xn we have ρ(x1) · · · ρ(xn) =
fBρ(x)

(t(x1) · · · t(xn)). Note that for each A there is exactly one run of A on t.
The run ρ is accepting if each leaf is labeled with a final state. As usual, the
language accepted by A consists of all trees t such that the run of A on t is
accepting.

It is not difficult to see that not all regular tree languages can be recognized
by ↓DTAs. Consider for example the language Tcd = {a(a(c)a(d)), a(a(d)a(c))}.
Every ↓DTA recognizing the two trees from Tcd will also recognize the trees
a(a(c)a(c)) and a(a(d)a(d)).

We show that it is decidable whether a given regular tree language can be
recognized by a ↓DTA. The proof follows the same lines as for ranked trees using
the notions of path language and path closure ([Vir80,GS84]). When a↓DTA
descends a tree, then on each path it can only see the sequence of labels of
this path and on each level the sequence of labels of the siblings. For example,
the information known to a ↓DTA on the leftmost path in the first tree from
Tcd can be coded as a . Oa / a . O / c. The letters outside the segments . · · · /
code the sequence of labels on the path, and the letters between the pairs ., /
show the labels of the siblings with the position corresponding to the node of the
considered path marked by O. This idea leads to a corresponding concept of path
language. Note that this generalizes the standard concept of path language over
ranked alphabets where a path code has the form a1i1a2i2 · · · i`−1a` indicating
that successively the successors i1, i2, . . . are taken. In our setting, the rank of aj

is captured by the length of the subsequent segment . · · · / and ij by the position
of O in this segment.

9

The alphabet we use for path languages is Σpath = Σ ∪ {., /, O}. The
path language π(t) of a tree t is defined inductively as π(a) = a for each
a ∈ Σ and π(t) =

⋃n

i=1{a . a1 · · · ai−1Oai+1 · · · an / w | w ∈ π(ai(ti))} for
t = a(a1(t1) · · · ak(tk)). In this definition we allow that ti is empty. In this case
ai(ti) = ai. The path language of T ⊆ TΣ is π(T) =

⋃
t∈T π(t). The path closure

of T is cl(T) = {t ∈ TΣ | π(t) ⊆ π(T)}. A language with T = cl(T) is called path
closed. In the following we show that the ↓DTA-recognizable languages are ex-
actly the path closed regular tree languages. The proof goes through a sequence
of lemmas.

Lemma 5. If T ⊆ TΣ is regular, then π(T) is a regular language of words.

Proof. Let A be a ↑NTA for T with one transition (La,q, a, q) for each pair of
state q and letter a. We assume that for each state q of A there is a tree t
with t→A q. Note that by applying a straightforward procedure for identifying
reachable states, we can restrict to this case.

One can easily define a non-deterministic finite automaton C accepting π(T).
This automaton, on reading the first symbol of the input word w, remembers
this first symbol a and guesses a final state q of A such that t→A q for some t
with w ∈ π(t). So, after this first step, C is in state (q, a).

The next part of the input is of the form .a1 · · ·ai−1Oai+1ak / ai (if it is not
of this form the input is rejected). The automaton C guesses a sequence q1 · · · qk

such that q1 · · · qk ∈ La,q. For this purpose, on reaching the gap O, it guesses ai

and verifies this guess after reading /. Furthermore, it simulates an automaton
for La,q to verify that the guessed sequence is indeed in La,q. On passing the
gap O it remembers the state qi and then moves to a state (qi, ai) after having
read /ai. The final states of C are those pairs (q, a) for which ε ∈ La,q. ut

Lemma 6. If T ⊆ TΣ is regular, then cl(T) is recognizable by a ↓DTA.

Proof. If T is regular, then π(T) is a regular word language by Lemma 5. Let
C = (Q, Σpath, q0, δ, F) be a deterministic finite automaton for π(T). We briefly
sketch how to construct a ↓DTA A = (Q, Σ, fin, (Bq)q∈Q, F) for T that simulates
C on every path. Note that A has the same set of states as C and the same set
of final states as C. The initial function is defined by fin(a) = δ(q0, a).

For every state q ∈ Q the behavior of Bq is as follows. When processing the
word a1 · · ·ak the machine Bq should output the sequence q1 · · · qk where qi is the
state reached by C when reading the word .a1 · · · ai−1Oai+1 · · ·ak / ai starting
from q. To realize this idea Bq has for each i (1) to compute the behavior of C on
.a1 · · ·ai−1O starting from q, and (2) the behavior of C on ai+1 · · · ak/ starting

from any state. For this purpose we define
−→
B q by

−→
S q = Q×Q, with initial state

(δ(q, .), δ(q, .)) and δ→q ((s1, s2), a) = (δ(s1, a), δ(s1, O)). In this way at letter i
we have access to the information described in (1).

To define the machine
←−
B q we denote by QQ the set of mappings from Q

to Q and by IdQ the identity mapping on Q. We let
←−
S q = {IdQ} ∪ (QQ ×

Σ) with IdQ as initial state. Furthermore, we let δ←q (IdQ, a) = (h/, a) with

10

h/ : Q → Q defined by h/(q) = δ(q, /), and for h ∈ QQ and a, a′ ∈ Σ we
let δ←q ((h, a), a′) = (h′, a′) with h′ : Q → Q defined by h′(q) = h(δ(q, a)).
This provides the information described in (2). These two informations are then
combined by the output function fq of Bq as follows: fq((q1, q2), a, (h, b)) =
δ(h(q2), a). ut

Lemma 7. If T ⊆ TΣ is recognizable by a ↓DTA, then T is path closed.

Proof. Let A = (Q, Σ, qin, (Bq)q∈Q, F) be a ↓DTA recognizing T . For each state
q of A and each letter a denote by Aa→q the automaton obtained from A by
setting fin(a) = q and let Ta→q denote the language accepted by Aa→q . We show
by induction on the height of t that π(t) ⊆ π(Ta→q) implies that t ∈ Ta→q for
each q ∈ Q and each a ∈ Σ.

If t is of height 0, i.e., t = a for some a ∈ Σ, then this claim obviously holds.
Let t = a(t1 · · · tk) and let ai = ti(ε). If π(t) ⊆ π(Ta→q) then for each w ∈ π(t)
there is a tree tw ∈ Ta→q such that w ∈ π(tw). By definition of path language
each of the tw is of the form tw = a(tw,1 · · · tw,k) with tw,i(ε) = ai. Since Aa→q

is top-down deterministic, there is for each i ∈ {1, . . . , k} a state qi such that
for each w ∈ π(t) the accepting run of Aa→q on tw labels node i with qi. Hence,
tw,i ∈ Tai→qi

for all w ∈ π(t) and all i ∈ {1, . . . , k} and thus π(ti) ⊆ π(Tai→qi
).

The induction yields ti ∈ Tai→qi
and hence t is accepted by Aa→q . ut

As an immediate consequence of the previous lemmas we get the following the-
orem.

Theorem 5. Let T ⊆ TΣ be regular. Then T is ↓DTA recognizable if and only
if T is path closed.

Since the construction from Lemma 6 is effective and since language inclusion
can be checked for finite automata over unranked trees, we also get the desired
decidability result.

Theorem 6. Given a regular language T ⊆ TΣ it is decidable whether T can be
recognized by a ↓DTA. Furthermore, such a ↓DTA can be effectively constructed.

Let us address two restricted models of deterministic top-down tree au-
tomata, which are as well natural, mutually incompatible in expressive power,
and lead to completely analogous results (and proofs) as given above.

The first model was already indicated in the introduction. Precisely as for
the case of deterministic top-down automata over ranked trees, one requires the
automaton to assume states at the successor nodes of a tree node x solely on the
basis of the label a at x, the state q assumed there, and the rank of a, i.e. the
number n of successors, but independent of the labels of the successor nodes.
This leads to a special model of bimachine where the input sequence is a word
•n rather than a label sequence a1 . . . an. Accordingly, in the coding of paths
we have to use between pairs ., / just the symbol • instead of the label letters,
besides O of course.

The second model is based on a left-to-right scanning process of successor
labels; so a standard sequential machine is used to produce the successor states,

11

hence without reference to the rank (the number n of the respective successor
nodes altogether). In this case, our coding of paths has to be modified by can-
celing the segments between a symbol O and the respective next / in order to
obtain results analogous Theorems 5 and 6 above.

5 Conclusion

In this paper we have extended the list of properties that carry over from tree
automata for ranked trees to the unranked setting. We have shown that, using
appropriate definitions, it is possible to minimize bottom-up deterministic tree
automata over unranked trees in quadratic time. This minimization yields unique
representatives for regular languages of unranked trees that can, e.g., be used
to speed up equivalence tests. We have also transferred the characterization
of deterministic top-down tree languages in terms of path languages and path
closure from the ranked to the unranked case. This characterization can be used
to decide for a given regular language of unranked trees whether it is top-down
deterministic.

A refinement of the minimization algorithm and a detailed analysis of the
complexity, as well as the problem of minimizing deterministic top-down au-
tomata are subject of current and future research.

References

[BB02] J. Berstel and L. Boasson. Formal properties of XML grammars and lan-
guages. Acta Informatica, 38:649–671, 2002.

[Ber79] J. Berstel. Transductions and Context-Free Languages. Teubner, 1979.
[BKWM01] A. Brüggemann-Klein, D. Wood, and M. Murata. Regular tree and regular

hedge languages over unranked alphabets: Version 1. unfinished technical
report, April 2001. http://citeseer.ist.psu.edu/451005.html.

[CDG+97] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata Techniques and Applications. unpub-
lished electronic book, 1997. http://www.grappa.univ-lille3.fr/tata.

[Eil74] S. Eilenberg. Automata, languages, and machines, volume A. Academic
Press, 1974.

[GS84] F. Gécseg and M. Steinby. Tree automata. Akadémiai Kiadò, Budapest,
1984.

[Hop71] J. E. Hopcroft. An nlogn algorithm for minimizing states in a finite au-
tomaton. Theory of Machines and Computations, pages 189–196, 1971.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-

guages, and Computation. Addison Wesley, 1979.
[MSV03] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers.

Journal of Computer and System Sciences, 66(1):66–97, 2003.
[NS02] F. Neven and Th. Schwentick. Query automata on finite trees. Theoretical

Computer Science, 275:633–674, 2002.
[Vir80] J. Virágh. Deterministic ascending tree automata I. Acta Cybernet., 5:33–

42, 1980.

12

