Skip to main content

Generic Density and Small Span Theorem

  • Conference paper
Fundamentals of Computation Theory (FCT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3623))

Included in the following conference series:

Abstract

We refine the genericity concept of [1], by assigning a real number in [0,1] to every generic set, called its generic density. We construct sets of generic density any E-computable real in [0,1]. We also introduce strong generic density, and show that it is related to packing dimension [2]. We show that all four notions are different. We show that whereas dimension notions depend on the underlying probability measure, generic density does not, which implies that every dimension result proved by generic density arguments, simultaneously holds under any (biased coin based) probability measure. We prove such a result: we improve the small span theorem of Juedes and Lutz [3], to the packing dimension [2] setting, for k-bounded-truth-table reductions, under any (biased coin) probability measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambos-Spies, K.: Resource-bounded genericity. In: Proceedings of the Tenth Annual Structure in Complexity Theory Conference, pp. 162–181 (1995)

    Google Scholar 

  2. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong dimension in algorithmic information and computational complexity. In: Proceedings of the Twenty-First Symposium on Theoretical Aspects of Computer Science, pp. 632–643 (2004)

    Google Scholar 

  3. Juedes, D., Lutz, J.: The complexity and distribution of hard problems. In: Proceedings of the 34th FOCS Conference, pp. 177–185 (1993)

    Google Scholar 

  4. Lutz, J.: Almost everywhere high nonuniform complexity. Journal of Computer and System Science 44, 220–258 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ambos-Spies, K., Mayordomo, E.: Resource-bounded measure and randomness. Lecture Notes in Pure and Applied Mathematics, pp. 1–47 (1997)

    Google Scholar 

  6. Ambos-Spies, K., Neis, H., Terwijn, S.: Genericity and resource bounded measure for exponential time. Theoretical Computer Science 168, 3–19 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lutz, J.: Dimension in complexity classes. In: Proceedings of the 15th Annual IEEE Conference on Computational Complexity, pp. 158–169 (2000)

    Google Scholar 

  8. Lutz, J.H.: Effective fractal dimensions. To appear in Mathematical Logic Quarterly (2003)

    Google Scholar 

  9. Lutz, J.: The dimensions of individual strings and sequences. Information and Computation 187, 49–79 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dai, J., Lathrop, J., Lutz, J., Mayordomo, E.: Finite-state dimension. Theoretical Computer Science 310, 1–33 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fortnow, L., Lutz, J.: Prediction and dimension. Journal of Computer and System Sciences 70, 570–589 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fenner, S.A.: Gales and supergales are equivalent for defining constructive hausdorff dimension. Technical Report CC/0203017, Arxiv.org (2002)

    Google Scholar 

  13. Lorentz, A.K., Lutz, J.H.: Genericity and randomness over feasible probability measures. Theoretical Computer Science 207, 245–259 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ambos-Spies, K., Merkle, W., Reimann, J., Stephan, F.: Hausdorff dimension in exponential time. In: Proceedings of the 16th IEEE Conference on Computational Complexity, vol. 172, pp. 210–217 (2001)

    Google Scholar 

  15. Hitchcock, J.M.: Small spans in scaled dimension. In: Proc. 19th ann. IEEE Conference on Computational Complexit, pp. 104–112 (2004)

    Google Scholar 

  16. Buhrman, H., van Melkebeek, D.: Hard sets are hard to find. Journal of Computer and System Sciences 59(2), 327–345 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Balcazar, J.L., Diaz, J., Gabarro, J.: Structural Complexity I. EATCS Monographs on Theoretical Computer Science, vol. 11. Springer, Heidelberg (1995)

    Google Scholar 

  18. Balcazar, J.L., Diaz, J., Gabarro, J.: Structural Complexity II. EATCS Monographs on Theoretical Computer Science, vol. 22. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  19. Lutz, J.: The quantitative structure of exponential time. In: Hemaspaandra, L., Selman, A. (eds.) Complexity Theory Retrospective II, pp. 225–260. Springer, Heidelberg (1997)

    Google Scholar 

  20. Moser, P.: Baire’s categories on small complexity classes. In: 14th Int. Symp. Fundamentals of Computation Theory, pp. 333–342 (2003)

    Google Scholar 

  21. Impagliazzo, R., Moser, P.: A zero-one law for RP. In: Proceedings of the 18th Conference on Computational Complexity, pp. 48–52 (2003)

    Google Scholar 

  22. Moser, P.: Derandomization and Quantitative Complexity. PhD thesis, University of Geneva (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moser, P. (2005). Generic Density and Small Span Theorem. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_9

Download citation

  • DOI: https://doi.org/10.1007/11537311_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28193-1

  • Online ISBN: 978-3-540-31873-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics