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Abstract. Software model checking problems generally contain two dif-
ferent types of non-determinism: 1) non-deterministically chosen values;
2) the choice of interleaving among threads. Most modern software model
checkers can handle only one source of non-determinism efficiently, but
not both. This paper describes a SAT-based model checker for asyn-
chronous Boolean programs that handles both sources effectively. We ad-
dress the first type of non-determinism with a form of symbolic execution
and fix-point detection. We address the second source of non-determinism
using a symbolic and dynamic partial-order reduction, which is imple-
mented inside the SAT-solver’s case-splitting algorithm. The preliminary
experimental results show that the new algorithm outperforms the ex-
isting software model checkers on large benchmarks.

1 Introduction

Model checking [1] is a formal verification technique for detecting behavioral
anomalies in system descriptions. In recent years, a number of model checkers
have been built specifically for the analysis of software. These tools have uncov-
ered defects that would have otherwise gone undetected. However, they do not
scale gracefully when applied to software of substantial size. Thus, much of the
research on model checking has focused on improving scalability.

The size of the state space of a system is directly related to the amount of
non-determinism present in the model. Concurrent software with asynchronous
interleaving semantics has two sources of non-determinism: 1) Non-deterministic
choice of data values, given explicitly in the program, and 2) the non-deterministic
choice of the interleavings among the threads.

Powerful techniques have been developed to address both of these forms of
non-determinism. Partial-order reduction is specifically designed to mitigate the
concurrency among threads. Symbolic data structures concisely represent large
sets of states. Unfortunately, these two techniques are difficult to combine. For
this reason, with few exceptions, model checkers for software systems tend to
come in one of two flavors: Symbolic software model checkers are strong when
proving properties of programs with symbolic data but are not good at reasoning
about concurrent programs with many threads; Explicit-state model checkers
have powerful methods for the verification of programs with multiple threads,
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but are not useful when applied to systems with significant amounts of symbolic
data.

In this paper, we propose a model checking algorithm that efficiently ana-
lyzes programs with both non-deterministic data values and multiple threads
of execution. The algorithm is limited to Boolean programs [2,3] extended with
asynchronous threads [4,5]. Boolean programs—which are like C programs, but
are limited to variables with type bool—have become a common model for tools
that implement counterexample-guided abstraction refinement for software ver-
ification. Boolean programs allow the programmer to choose data values non-
deterministically. We restrict ourselves to non-recursive programs, which we have
found to be acceptable when performing analysis on system-level code. We also
restrict the set of properties that can be verified to those that can be expressed
in terms of reachability.

The algorithm described in this paper can be used immediately from within
software model checkers such as Slam [6] or Blast [7]. These model check-
ers implement software predicate abstraction, i.e., they abstract a C program
into a Boolean program. Using Slam, we can now verify properties of device
drivers with an accurate representation of the threads together with abstract
representations of their environments.

The contribution of this paper is a method for combining SAT-based symbolic
model checking and the partial-order reduction. We represent the states symbol-
ically using a parametric representation [8,9]. The data structure grows linearly
in the number of execution steps, even in the presence of non-deterministically
chosen data values. As the parametric representation is not canonical, the fix-
point detection becomes harder. We use solvers for Quantified Boolean Formulae
(QBF) for this task. We leverage the recent remarkable improvements in this
technology [10,11].

We use a propositional logic SAT-solver as part of the symbolic simulation
algorithm. This allows us to implement a form of partial-order reduction as a
modification of the SAT-solver. The key idea behind this method is that the case-
splitting algorithm used within backtracking-based SAT-solvers can be modified
to eliminate undesired interleavings. This turns out to be much faster than al-
ternative combination methods, such as adding constraints to the query that is
passed to the SAT-solver. The resulting reduction is dynamic, as the choice of
interleaving depends on the particular set of states found during the reachability
analysis. We have implemented the algorithm proposed in this paper in a tool
called BoPPo.

The remainder of this paper is organized as follows. We provide some back-
ground on Boolean programs in Section 2. We then describe our algorithm in
the Sections 3 and 4. We describe the results for our experimental evaluations
in Section 5. In Section 6, we conclude and discuss some ideas for future work.

Related Work. Several model checkers support sequential Boolean programs.
Bebop [2] and Moped [3] are BDD-based symbolic model checkers, and both
handle recursive procedures. In principle, because BoPPo supports only a fixed
number of threads and non-recursive procedures, the threaded programs could
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be converted into sequential programs that Bebop and Moped could process.
This is not practical, however, because only a lightweight and static form of
partial-order reduction could be applied during the translation, rather then the
dynamic one that BoPPo employs.

Dizzy [12] uses SAT-based symbolic simulation. The fix-point detection is
done by computing BDDs representing the set of reachable states. Our work uses
a similar algorithm, but uses QBF for the fix-point detection. As Bebop and
Moped, Dizzy does not support multiple threads.

Several previous efforts have also applied model checking to Boolean pro-
grams with asynchronous threads. For example, Jain, Clarke and Kroening [5]
use the BDD-based model checker NuSMV [13] to verify concurrent Boolean
programs with only very limited success.

Forms of partial-order reduction for explicit-state model checking (examples
include [14,15]) have been a particularly effective for verifying programs and
protocols with many threads. For example, Ball, Chaki and Rajamani [4] describe
a partial-order reduction based explicit state model checker, called Beacon, for
asynchronous Boolean programs. Beacon, however, was overly sensitive to the
occurrence of symbolic data generated by Slam.

The idea of combining symbolic reasoning with partial-order reduction is not
new. Our proposal shares a great deal of motivation with Alur et al. [16], who
describe a method of combining partial-order reduction together with a BDD-
based symbolic model checker. Their algorithm first computes a constrained
transition relation, called an ample transition relation. This is then given to a
BDD-based model checker. Our experiments indicate that this technique does
not provide much benefit in the context of SAT-solvers. The overhead of adding
static constraints to the SAT-solver’s data structure seems to abate the potential
benefit of less state-space exploration. As it turns out, many of the constraints
that are added are actually never used, resulting in wasted effort. Our imple-
mentation, which simply limits the assignments from which the SAT-solver can
choose when case-splitting, requires less overhead when computing representative
paths. In [17], the reduction is applied before passing the model to a Bounded
Model Checker (BMC). In [18], interleavings are added incrementally to a BMC
instance. In contrast to our work, a fix-point is not detected, and thus, the
algorithm is incomplete.

In [19], Lerda, Sinha and Theobald integrate partial-order reduction into a
BDD-based model checker, as opposed to a pre-processing step. This approach
is similar to our proposal. The difference between this previous work and our
proposal is in the representations of data, the class of solvers used, and methods
of implementing the dynamic partial-order reduction. Whereas they use BDDs,
we use SAT and QBF solvers and must therefore implement the partial-order
reduction within the SAT-solver in a different manner.

Several methods address the problem of scalability in the presence of threads
and non-deterministically chosen data via forms of decomposition [20,21]. These
techniques usually either sacrifice some amount of completeness or require small
amounts of intervention from the user. The advantage of these approaches is that
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the analysis is much more scalable. In the future, researchers interested in thread
modular approaches may be able to use our method of combining partial-order
reduction and symbolic reachability in a way that allows them to improve on
the completeness and user-interaction required.

Unsound approaches have also proved successful in finding bugs in concurrent
programs. For example, Qadeer & Rehof [22] note that many bugs can be found
when the analysis is limited to execution traces with only a small set of context-
switches. This analysis supports recursive programs. Our approach complements
these techniques because, while they are unsound, they are able to analyze a
larger set of programs.

2 Boolean Programs

2.1 Boolean Programs and Predicate Abstraction

Predicate abstraction [23,24] is a commonly used method for systematically con-
structing conservative abstractions of software. When combined with reachability
analysis and an automatic abstraction refinement mechanism, it forms an effec-
tive model checking strategy. Predicate abstraction constructs the abstraction
by tracking only certain predicates on the data. Each predicate is represented
by a Boolean variable in the abstract program, while the original data variables
are eliminated. Extra non-determinism is added into the abstraction in order to
maintain soundness of the sequential control-flow constructs in the abstraction.
When predicate abstraction is performed on software systems with threads, the
result is an abstraction that makes fundamental use of both non-deterministically
chosen values and non-deterministically scheduled threads. Therefore, we need
an efficient reachability analysis for these abstract models.

The following example shows code that is typical of a Windows device driver:

void DecrementIo(DEVICE_OBJECT * DeviceObject) {

EXT * ext = (EXT*)DeviceObject->DeviceExtension;

int IoIsPending = InterlockedDecrement (&ext->IoIsPending);

if (!IoIsPending){ KeSetEvent (&ext->event, IO_NO_INCREMENT, FALSE); }

}

An abstraction of this function is obtained by passing it to Slam [6]. In the
first iteration of the abstraction refinement loop, Slam computes the following
Boolean program fragment:

void DecrementIo_abstraction() {

InterlockedDecrement_abstraction();

goto L1,L2;

L1: KeSetEvent_abstraction();

L2: return;

}

This example demonstrates how predicate abstraction generates Boolean pro-
grams that make non-trivial use of both forms of non-determinism. This abstrac-
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tion is using a non-deterministic goto instruction to model the conditional op-
erator in the original function. This code fragment is also calling an abstraction
of the Windows kernel synchronization primitive KeSetEvent.

In further refinement iterations, Slam usually adds variables to the abstrac-
tion. Suppose the following predicates are used to refine the abstraction above:

{ b1 � ext == &envext, b2 � envext.IoIsPending == 1

, b3 � envext.IoIsPending == 2, b4 � IoIsPending == 2

, b5 � IoIsPending == 1, b6 � (∗ext).IoIsPending == 1

, b7 � (∗ext).IoIsPending == 2}
This results in the following new abstract model:

bool b1,b2,b3;

void DecrementIo_abstraction() {

bool b4,b5,b6,b7;

b1,b6,b7 = *,*,*

constrain((!(b1’ && b2) || b6’) && (!(b1’ && b3) || b7’));

b4,b5 = InterlockedDecrement_abstraction(b6,b7);

goto L1,L2;

L1: assume(!b4 && !b5);

KeSetEvent_abstraction();

L2: return;

}

Due to the imprecision of the abstraction, we cannot prove that ext==&envext,
nor can we prove that ext!=&envext. Therefore, a non-deterministically chosen
value has to be assigned to the variable b1, which represents this predicate. This
is necessary to preserve the soundness of the analysis.

Furthermore, using the constrain operator, this assignment statement re-
stricts the choice such that b6 must be true after the assignment if b1 is true
after the assignment and b2 is true before the assignment. Analogously, b7 must
be true after the assignment if b1 is true after the assignment and b7 is true
before the assignment. This abstraction also refines the non-deterministic goto
using an assume statement: the program declares that any transition passing
through the L1 location must ensure that b4 and b5 are false.

2.2 Formal Semantics of Boolean Programs

In this section, we provide a simple operational semantics for asynchronous,
concurrent Boolean programs. Later, in Section 3.2, we use the semantics to
construct an algorithm that transforms Boolean program reachability into a
propositional logic formula. The formalization is based on the description of
sequential Boolean programs in [2].

Definition 1. An explicit state η of a Boolean program is a tuple (i, Ω), with
i : T �→ L and Ω : V �→ B.

The first component of an explicit state η, called i, is a mapping from the
set of threads T into the set of program locations L. Thus, i(t) denotes the
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instruction that is to be executed next by thread t ∈ T . The second component,
called Ω, is a mapping from the set of variables V into the set of the two Boolean
values, i.e., it assigns an explicit value to each state variable.

Notation. Given a valuation Ω and an expression e over the variables V , we
use Ω(e) in order to denote the evaluation of e. This is defined in the usual way.
In addition to that, we also allow expressions that refer to the values of variables
in two different states η1 and η2. Syntactically, the values of the two states
are distinguished by using primed versions of the variables. We use (η1, η2)(e)
in order to denote the evaluation of e in the states η1 and η2. The unprimed
variables in e are substituted by the values given in η1, while the primed variables
in e are substituted by the values given in η2. As an example, consider the
valuation Ω1 = {(x, 1), (y, 0)} and Ω2 = {(x, 0), (y, 0)}. For these valuations,
and an expression e = x ∨ x′, we have (η1, η2)(e) = 1 ∨ 0.

We also allow additional choice variables ι1, . . . , ιk inside the expressions. We
use ι to denote the vector of these variables. Given a particular non-deterministic
choice ι and a state η, we denote the evaluation of the expression e in η with
the choice ι as (η, ι)(e).

Given an explicit state η, we denote the first component by η.i, and the second
component by η.Ω. For any function f : D → T , we define f [d/r] : D → R as
f [d/r](x) = r if d = x, and f [d/r](x) = f(d) otherwise.

Execution Semantics. Assume the scheduler picks thread t ∈ T to execute
in state η. We use η1 →t η2 to denote the fact that a transition from state η1

is made to η2 by executing one statement of thread t. The statement that is
executed is P (η1.i(t)). The relation η1 →t η2 is defined by a case-split on this
instruction. The conditions for each statement are shown in Table 1. We explain
the formalization of each statement as follows:

– The skip statement increments the program counter of thread t. The values
of the variables and the program counters of the other threads do not change.

– The goto θ1, . . . , θk statement changes the program counter of thread t to
one of the program locations θ1, . . . , θk given as argument. The choice is
arbitrary, i.e., non-deterministic. The values of the variables and the program
counters of the other threads do not change.

– The assume e statement behaves like skip, but with the additional constraint
that the expression e must evaluate to true in state η1. If the expression
evaluates to false, η1 has no successor states.

– The constrained assignment statement x1, . . . , xk := e1, . . . , ek constrain e
changes the program counter like skip. It also updates the values of the vari-
ables using the expressions e1, . . . , ek. The expressions are evaluated in state
η1. The expressions may contain choice variables ι1, . . . , ιk. These variables
allow a non-deterministic choice on data, and are quantified existentially.
The transition also has an additional constraint e. The constraint e is a pred-
icate in terms of the current state η1 and the next state η2. It is evaluated in
both states accordingly, where the next state variables are primed. If there is
no choice for ι, which satisfies the constraint, state η1 has no successor states.
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Table 1. Conditions on the explicit state transition 〈i1, Ω1〉 →t 〈i2, Ω2〉, for each type

of statement P (i1)

P (i1) i2 Ω2

skip i2(x) = i1[t/i1(t) + 1] Ω2 = Ω1

goto θ1, . . . , θk
i2(x) = i1[t/θ1] ∨ . . .∨
i2(x) = i1[t/θk]

Ω2 = Ω1

assume e i2(x) = i1[t/i1(t) + 1]
Ω2 = Ω1 ∧

Ω1(e) = true

x1, . . . , xk := e1, . . . , ek

constrain e
i2(x) = i1[t/i1(t) + 1]

∃ι. Ω2 = (Ω1[x1/(Ω1, ι)(e1)]
. . . [xk/(Ω1, ι)(ek)] ∧

(η1, η2, ι)(e)

We do not define semantics for syntactic sugar such as if or while, as these
statements can be easily transformed using goto and assume, as illustrated in
section 2.1. Also, function calls can be inlined; we do not support unbounded
recursion, as the reachability problem for concurrent programs with unbounded
recursion is undecidable.

Finally, we write η1 → η2 if there exists a thread t ∈ T such that η1 →t η2.
We say that there is a transition from η1 to η2 in this case, or that η1 is reachable
from η2 with one transition.

A state η2 is reachable from a state η1 in k transitions if there exists a state
η′, η′ is reachable from η1 in k − 1 transitions, and η2 is reachable from η′ in
one transition. Given an initial state ηI , the set of reachable states is the set of
states that is reachable from ηI in any number of transitions. The property we
check is reachability of states with particular program locations.

3 SAT-Based Symbolic Simulation

In this section we describe how we represent a set of states symbolically using
formulae, and then how to transform Boolean programs into such formulae.

3.1 Representation of States

Definition 2. A symbolic formula is defined using the following syntax rules:

1. The Boolean constants true and false are formulae.
2. The non-deterministic choice variables ι1, . . . are formulae.
3. If f1 and f2 are formulae, then f1 ∧ f2, f1 ∨ f2, and ¬f1 are formulae.

The set of such formulae is denoted by F .

A symbolic formula may evaluate to multiple values due to the choice vari-
ables. As an example, the pair of formulae 〈ι1, ι2 ∧ ¬ι1〉 may evaluate to 〈0, 0〉,
〈1, 0〉, 〈0, 1〉, but not to 〈1, 1〉. We use these symbolic formulae in order to rep-
resent a set of states:
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Definition 3. A symbolic state σ is a triple 〈i, ω, γ〉, with i : T �→ L, ω : V �→
F , and γ : F .

Given a particular valuation for the choice variables ι, we denote the value
of a symbolic formula f as ι(f).

The first component of a symbolic state σ, called i, is identical to the first
component of an explicit state (definition 1). The second component, called ω,
is a mapping from the set of variables V into the set of formulae. It denotes the
symbolic valuation of the state variables. The third component, called γ, is a
formula that represents the guard of the state symbolically.

Thus, we represent the program counters explicitly, while the program vari-
ables are represented symbolically. The set of explicit states represented by σ
are those states η that satisfy the following conditions:

– They have the same PC values given by i.

η.i = σ.i (1)

– There exists a non-deterministic choice ι, which satisfies the guard γ, and
assigns values to the variables that match the values given by Ω.

∃ι.ι(γ) ∧ ∀v ∈ V.Ω(v) = ι(ω(v)) (2)

Thus, the set of explicit states corresponding to a symbolic state is defined
using a predicate in the parameter ι. Thus, we have a parametric representation.
Parametric representations of sets of states have been used in formal verification
before [8,9], but mostly in the context of hardware verification.

Note that the problem of whether there exists an explicit state represented by
a given symbolic state is equivalent to the problem of propositional satisfiability.
A satisfying assignment contains concrete valuations for the state variables and
for the choice variables, and thus, a SAT-solver provides a witness.

3.2 Symbolic Execution

Assume that the scheduler picks thread t ∈ T to execute in the symbolic state σ.
In analogy to the explicit state model, we use σ1 →t σ2 to denote the fact that
a transition from state σ1 is made to σ2 by executing one statement of thread t.
Again, the statement that is executed is P (σ1.i(t)). The definition of the relation
σ1 →t σ2 is done using a case-split on this instruction. The conditions for each
statement are shown in Table 2. The column describing the constraints on the
program counters i1 and i2 is identical to the column in Table 1, and therefore
is not repeated here. We explain the formalization of each statement as follows:

– The definitions of the skip and goto statements follow the definitions for
the explicit state case. The formulae for the guards are not changed by these
statements.

– In the symbolic case, the assume e statement does not have the precondition
that e is true. Instead, the condition e is instantiated in the state σ1. This
results in a symbolic formula. The symbolic formula is conjoined with the
guard γ1, forming the formula γ2.
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Table 2. Conditions on the symbolic transition 〈i1, ω1, γ1〉 →t 〈i2, ω2, γ2〉, for each

type of statement P (i1). For the constraints on i1 and i2, see table 1.

P (i1) ω2 γ2

skip ω2 = ω1 γ2 = γ1

goto θ1, . . . , θk ω2 = ω1 γ2 = γ1

assume e ω2 = ω1 γ2 = (γ1 ∧ ω1(e))

x1, . . . , xk := e1, . . . , ek

constrain e
ω2 = (ω1[x1/ω1(e1)] . . . [xk/ω1(ek)] γ2 = (γ1 ∧ (ω1, ω2)(e))

– In the symbolic case, a constrained assignment statement x1, . . . , xk :=
e1, . . . , ek constrain e updates the values of the variables using the ex-
pressions e1, . . . , ek. The expressions are evaluated in state η1. It is no longer
necessary to instantiate the values of the non-deterministic choice variables
ι, as ω(v) is now a formula, and not a Boolean value. Thus, the choice vari-
ables become part of the formula. Also, the additional constraint e is added
to the guard, in analogy to an assume statement.

3.3 Reachability Algorithm

In order to check reachability of a particular program location b ∈ L using the
symbolic model, we implement an exhaustive search of the state space. This is
done by most explicit state model checkers as well, e.g., by Spin [25]. The basic
algorithm is shown in Figure 1. The main differences between our implementation
and an explicit state model checker are as follows:

1) We maintain a queue of symbolic states for the search. A search heuristic
picks the next state to explore from the queue.

2) Before reachability of a bad state σ can be concluded, we must run a SAT
solver (denoted by the function IsSatisfiable) in order to check that σ.γ is
satisfiable, and thus, the set of concrete states represented by σ is non-empty.
Note that the guards of the states on one path only get stronger, and never
weaker, and thus, it is sufficient to check the guards of the bad states only.

3) In order to conclude that no bad states are reachable, explicit state model
checkers maintain a history of the states that have been explored. This set of
states is typically organized using a hash table. Because of the symbolic represen-
tation, we cannot use this approach. Instead, we use a symbolic solver in order
to compare the symbolic state that is chosen next to explore with the states that
have been explored so far. This is implemented in the procedure IsHistory. The
details of this function are described in section 4.

3.4 Partial-Order Reduction

When computing the successors of a given symbolic state σ, we usually have to
consider the possibility that any of the threads t ∈ T can make a transition. The
choice is non-deterministic. Formally, we have to compute all states σ′ for which
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// Input: Boolean Program P with locations L, bad location b ∈ L

// Output: true iff b is reachable in P

// Variables: Queue Q of symbolic states

SymbolicReachability(P, b)

1 Compute initial state σI

2 Q := {σI};
3 while (¬Q 	= ∅)
4 σ := Element from Q;

5 if IsHistory(σ) then

6 Q := Q \ σ;

7 elseif ∃t ∈ T. σ.i(t) = b ∧ IsSatisfiable(σ.γ) then

8 return true;

9 else

10 Q := (Q \ σ)∪ GetSuccessors(P, σ);

11 endif

12 end

13 return false;

Fig. 1. High Level Description of the Symbolic Reachability Algorithm

a thread t ∈ T exists which can make a transition from σ to state′. A sequence of
choices for a particular thread t is called an interleaving. The problem is that the
number of states explored can grow dramatically with the number of threads.
Even with just two threads, the number of interleavings blows up in the number
of execution steps. In contrast to that, a sequential program only requires as
many symbolic states as there are execution steps.

The purpose of Partial-Order Reduction [15] is to reduce the number of paths
that have to be explored. This is done in a way that preserves the property, i.e.,
the property holds on the reduced model if and only if it holds on the full,
original model.

Symbolic Partial-Order Reduction Using SAT. The approach we take
is related to what many explicit state model checkers implement. We aim at
finding a thread t that makes an invisible transition, i.e., a transition which is
independent from a transition made by any other thread t′ 
= t. We compute the
sets of variables written and read by each of the threads. Let Rt denote the set
of variables that are read, and Wt the set of variables that are written by thread
t in the current state. If thread t is not enabled, these sets are empty. If a thread
t is found with Wt ∩ (

⋃
i�=t Ri ∪ Wi) = ∅ and Rt ∩

⋃
i�=t Wi = ∅, we only explore

the successors generated by executing t. All other transitions are discarded.
This reduction preserves the property we are checking, i.e., reachability of

program locations. The computation of the reduction requires knowledge of the
enabled transitions and of the dependencies between the transitions. This is
computationally inexpensive in case of an explicit state model checker, as all the
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values of the variables are known. In contrast, we use a symbolic representation.
The question of whether a particular transition is enabled or not corresponds
to a SAT instance. A syntactic over-approximation of the set of enabled transi-
tions and the dependencies is feasible, but often does not result in a significant
reduction. We therefore use a modified SAT solver in order to compute the set
of interleavings we explore.

SAT has been used in the context of asynchronous transition systems be-
fore. As in most existing approaches, we build a SAT instance that has non-
deterministically chosen variables for the thread selector and an encoding of the
transitions out of the given state. Typically, constraints on the thread selector
variables are added upfront in order to limit the possible choice of interleavings.
However, our initial experiments showed that most of these constraints are un-
necessary, as they eliminate transitions out of states that are unreachable, and
often make the instance much harder.

We therefore use the following, alternative approach: the SAT instance we
form uses a one-hot encoding for a thread about to make an invisible transition.
We implement the constraints on the variables that are read and written as part
of the case-splitting heuristic of ZChaff, and not by adding appropriate clauses,
as this information is known statically. The SAT-solver only needs to determine
which threads are enabled, i.e., have a satisfiable guard.

Once a local interleaving is found, it is explored. If no local interleaving is
found, the thread to be executed is chosen by the SAT-solver’s decision heuristic.
Once its successors are computed, we add a blocking clause to prevent the same
transition from being explored again and backtrack.
Cycle Detection. The method of removing interleavings that we described above
could lead to unsound results. In fact, there is a possibility that some transitions
will be delayed forever because of a cycle in the reduced model.

To prevent the loss of transitions, partial-order reduction techniques require
satisfaction of a cycle condition [26]. The cycle condition prohibits cycles that
contain a state in which some transition is enabled, but is never taken for any
state on the cycle. The intuitive reason for this condition is to avoid postponing
a transition indefinitely while generating the reduced model.

Algorithmically, we solve this issue in the same way as most explicit state
model checkers: when postponing a transition, we note this fact on the search
stack. If the IsHistory procedure detects that a state has been explored before,
we resume the evaluation of the postponed transitions.

4 Fix-Point Detection

In order to detect fix-points, we need to compare the new set of states to the set
of states that we have already explored. When using BDDs, two sets of states
can be compared by simply comparing the graphs of the BDDs. The drawback
of using BDDs is that already only very few steps of symbolic simulation may
result in prohibitively large BDDs.
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As described in the previous section, we store the states using a non-canonical
symbolic representation. While this representation allows us to execute a state-
ment symbolically in linear time, we pay a price in form of a harder fix-point
detection problem.

The fix-point detection is implemented in the IsHistory procedure. It takes
a new symbolic state σn as input and returns true if it is subsumed by an old
symbolic state σo in a set H . The program counter part of the state is stored
explicitly. Thus, the first step of the algorithm is to obtain the set of old states
H ′ ⊆ H with program counter values that match those of state σn. This is
implemented using a hash table, as is done in most explicit state model checkers.
The number of entries in this table is limited by the partial-order reduction. We
therefore do not expect a blowup in this data structure.

The set H ′ corresponds to a disjunctive partitioning of the set of states.
Disjunctive partitionings are commonly used in symbolic model checkers for
asynchronous concurrent programs, e.g., in [13,27].

The second step is to check whether a symbolic state in σo ∈ H ′ subsumes the
symbolic state σn, i.e., if all explicit states represented by σn are also contained
in σo. Note that we will not detect the case that σn is not covered by any
single σo ∈ H ′, but rather by a combination of states in H ′. Comparing the new
state with the union of the symbolic states in H ′ would be too expensive. This
may delay the detection of the fix-point, but will neither affect soundness nor
termination.

A state σn is subsumed by a state σo if for all explicit states represented
by σn there exists an identical state represented by σo. As the program counter
components already match, we only need to compare the values of the state
variables. As given by Equation 2, the set of explicit states represented by a
symbolic state is defined using an existential quantification over the choice vari-
ables ι. Formally, for each choice of inputs ιn for the new state σn, there must
exist a (possibly different) choice of inputs ιo for the old state σo that results in
the same state:

∀ιn|ιn(γn). ∃ιo|ιo(γo). ιn(ωn) = ιo(ωo) (3)

Equation 3 can be transformed into a Quantified Boolean Formula (QBF)
and passed to a QBF solver such as Quantor [10] or Quaffle [11]. We have found
that modern QBF solvers, and especially Quantor, can handle surprisingly large
instances that we generate. If the QBF solver determines the formula to be true,
we can discard the state σn. Otherwise, we insert σn into H , and proceed with
the state space exploration using the successors of state σn.

Optimization. In Equation 3, the outermost quantification is done over the
non-deterministic choice variables used as parameter for the states represented
by σn. Given a deep symbolic simulation, the number of such variables may be
large.

Note that we only care about the values of the state variables in a state
represented by σn. Thus, we can re-write Equation 3 such that the outer quan-
tification is done over the state bits, and not over the non-deterministic choices.
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Table 3. Experimental results: n/a denotes that the model checker does not handle the

benchmark due to lacking features, * denotes that the time limit (1 hour) or memory

limit (2 GB) was exceeded

Benchmark Moped SPIN Bebop Zing BoPPo

1 0.1s * 0.1s n/a 0.6s

2 * 3.8s 120s n/a 27.0s

3 n/a n/a 0.17s n/a 0.43s

4 n/a * 2058s n/a 75.6s

5 n/a * n/a * 55.8s

∀xn. ∃ιn, ιo.xn = ιn(ωn) ∧ (ιn(γn) =⇒ (ιo(γo) ∧ ιn(ωn) = ιo(ωo)) (4)

The number of state-bits may be much smaller than the number of non-de-
terministic choices, and thus, the complexity of the formula is reduced.

Another simple optimization is to restrict the set of variables we consider to
V ′ ⊆ V , where V ′ is the set of variables that are active in any of the program
locations L′ ⊆ L given by any of the program counters.

A variable is active in a program location if its value is of relevance to any
instruction reachable from the location. E.g., local variables that are not yet in
scope can be disregarded when comparing the values of the state variables.

A third optimization is to partition the set of variables into groups C1, . . . , Ck

that share choice variables. Indirect sharing, through other variables, has to be
considered.

5 Experimental Results

We have implemented the algorithm described above in a tool called BoPPo.
We use Limmat as the SAT solver, and Quantor as the QBF solver.

In this section, we compare BoPPo with other model checkers. We use the
explicit state model checkers SPIN [25] and Zing [28]. We also compare our
BoPPo with Moped [3] and Bebop [2], which are BDD-based symbolic model
checkers. Neither Bebop nor Moped supports multiple threads, however. The
experimental results are summarized in Table 3.

Benchmarks 1-4 are sequential; the first two benchmarks are artificial and
contain about 30 Boolean variables. In the first benchmark, most states are
reachable. The symbolic model checkers Bebop, BoPPo, and Moped handle
this benchmark easily, while the explicit state model checkers run out of memory
even with such a small number of state bits. The second benchmark encodes a
multiplication over the Boolean variables. SPIN handles this benchmark easily,
while Moped exceeds the 2GB memory limit.

The benchmarks 3-5 are generated by Slam. The Slam model checker im-
plements counterexample guided abstraction refinement for C programs. Bench-
mark 3 is a summary of 572 individual, small sequential benchmarks; the times
given for the benchmark denote the average runtime. On the small benchmarks,
Bebop outperforms BoPPo. Benchmark 4 is a large sequential device driver.
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An experimental version of Slam provides support for the verification of
concurrent programs4 In this mode, Zing is used as a replacement for Slam’s
sequential reachability engine, Bebop. Benchmark 5 is generated from a 4500
LOC Windows device driver with three threads in this manner.

As Zing is an explicit state model checker, it is not well-adapted to han-
dle the larger Boolean programs that are produced by predicate abstraction. As
discussed in Section 2, Slam generates abstractions that make frequent use of
non-deterministic choice. When Slam is used to verify the correctness of Win-
dows device drivers, we must also provide abstract representations of the kernel,
other device drivers, and user-level applications. This environment adds a large
amount of additional non-determinism. For this reason, Slam in combination
with Zing can process only relatively small model checking examples.

With BoPPo, Slam is now able to solve much larger problems. Zing is
unable to solve benchmark 6 after more than an hour of execution. BoPPo is
able to solve the benchmark within a minute. We attempted to run this same
benchmark using SPIN and NuSMV without any positive result.

Surprisingly, BoPPo appears to make a contribution for sequential programs
as well. As we try to apply Slam to more difficult properties and larger programs,
Bebop is sometimes the performance bottleneck. This problem is exacerbated by
experiments where we have used a theorem prover that is accurate with respect
to pointer arithmetic, bit-vectors, structures and unions [29] — this causes many
additional Boolean variables to be added to the abstraction and also causes the
logic used in the transition relation of the Boolean program to become more
complicated. This puts additional strain on Bebop.

In the worst case, the predicates can begin to resemble the arithmetic from
the original C program. BoPPo, because its symbolic representation is based
on SAT and QBF and not BDDs, is better able to scale to larger and more
complicated sequential Boolean programs.

6 Conclusion and Future Work

Symbolic model checking and partial-order reduction are hard to combine. For
this reason model checkers for software systems typically treat non-trivial amounts
of symbolic data, or non-trivial numbers of threads, but not both. We have pre-
sented a SAT-based model checking approach that can be used to efficiently
reason about the safety of Boolean programs with both symbolic data and mul-
tiple threads. This allows model checkers which abstract software into Boolean
programs to verify multi-threaded programs.

The algorithm presented in this paper implements partial-order reduction
using SAT. The reduction is based on a change to the case-splitting algorithm
used within the SAT-solver. This implementation strategy turns out to be better
than an approach in which constraints on the interleavings are encoded as part
of the input to the SAT-solver.

4 Thanks to Georg Weissenbacher and Jakob Lichtenberg.
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As future work, we want to experiment with other techniques for checking
state subsumption for parametric representations. In [30], the authors use a SAT
solver to compute a new parametric representation from a set of constraints. The
new parametric representation is canonical for a given variable ordering, and thus
allows an efficient fix-point detection. We would also like to try our techniques
for checking liveness properties and for checking equivalence of two programs.
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