Abstract
This paper characterizes when the normals of a spline curve or spline surface lie in the more easily computed cone of the normals of the segments of the spline control net.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boehm, W.: An affine representation of de Casteljau’s and de Boor’s rational algorithms. Computer Aided Geometric Design 10, 175–180 (1993)
Floater, M.: Derivatives of rational Bézier curves. Computer Aided Geometric Design 9, 161–174 (1992)
Floater, M.: Evaluation and properties of the derivative of a NURBS curve. In: Lyche, T., Schumaker, L. (eds.) Mathematical Methods in CAGD, Boston, Academic Press, pp. 261–274. Academic Press, London (1992)
Dyn, N.: Subdivision schemes in CAGD. In: Light, W. (ed.) Advances in Numerical Analysis. Volume II Wavelets, Subdivision Algorithms, and Radial Basis Functions, pp. 37–104. Oxford Science Publications, Wavelets (1992)
de Boor, C., Höllig, K., Riemenschneider, S.: Box splines. Springer, New York (1993)
Boehm, W.: Generating the Bézier points of triangular splines. In: Barnhill, R., Boehm, W. (eds.) Surfaces in Computer Aided Geometric Design, pp. 77–91. North-Holland Publishing Company, Amsterdam (1983)
Peters, J., Shiue, L.: Combining 4- and 3-direction subdivision. ACM Transactions on Graphics 23, 980–1003 (2004)
Loop, C.T.: Smooth subdivision surfaces based on triangles. Master’s thesis, Department of Mathematics, University of Utah (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ginkel, I., Peters, J., Umlauf, G. (2005). On Normals and Control Nets. In: Martin, R., Bez, H., Sabin, M. (eds) Mathematics of Surfaces XI. Lecture Notes in Computer Science, vol 3604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537908_14
Download citation
DOI: https://doi.org/10.1007/11537908_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28225-9
Online ISBN: 978-3-540-31835-4
eBook Packages: Computer ScienceComputer Science (R0)