Skip to main content

New Trends in Digital Shape Reconstruction

  • Conference paper
Book cover Mathematics of Surfaces XI

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3604))

Abstract

There are various segmentation and surfacing methods to create CAD models from measured data. First the difficulties of creating a good surface structure over a polygonal mesh are investigated, followed by investigating the most important approaches according to the amount of user interaction, computational efficiency and surface quality. References to commercial systems are also added. The focus of the paper is to present (i) automatic surfacing and (ii) functional decomposition. New demands and emerging technologies are also identified to trace out current trends in digital shape reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alias Studio Tools: http://www.alias.com

  2. Attene, M., Falcidieno, B., Rossignac, J., Spagnuolo, M.: Edge-Sharpener: Recovering sharp features in triangulations of non-adaptively re-meshed surfaces. In: Kobbelt, L., Schröeder, P., Hoppe, H. (eds.) Eurographics Symposium on Geometry Processing. The Eurographics Association (2003)

    Google Scholar 

  3. Benkö, P., Martin, R.R., Várady, T.: Algorithms for Reverse Engineering Boundary Representation Models. Computer Aided Design 33, 839–851 (2001)

    Article  Google Scholar 

  4. Benkö, P., Andor, L., Kós, G., Martin, R.R., Várady, T.: Constrained Fitting in Reverse Engineering. Computer Aided Geometric Design 19(1), 173–205 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Benkö, P., Várady, T.: Segmentation methods for smooth point regions of conventional engineering objects. Computer-Aided Design 36, 511–523 (2004)

    Article  Google Scholar 

  6. Bernardini, F., Rushmeier, H.: The 3D Model Acquisition Pipeline. Computer Graphics Forum 21(3), 149–172 (2002)

    Article  Google Scholar 

  7. Blacker, T.D., Stephenson, M.B.: Paving: A New Approach to Automated Quadrilateral Mesh Generation. International Journal for Numerical Methods in Engineering 32, 849–866

    Google Scholar 

  8. CopyCad: http://www.delcam.com

  9. Eck, M., Hoppe, H.: Automatic reconstruction of B-spline surfaces of arbitrary topological type. In: Proc. Siggraph Computer Graphics, pp. 325–334 (1996)

    Google Scholar 

  10. Edelsbrunner, H., Facello, M.A., Fu, P., Qian, J., Nekhayev, D.V.: Wrapping 3D scanning data. In: Ellson, R.N., Nurrep, J.H. (eds.) Proc. SPIE, Three-Dimensional Image Capture and Applications, vol. 3313, pp. 148–158 (1998)

    Google Scholar 

  11. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30, 87–107 (2003)

    MATH  MathSciNet  Google Scholar 

  12. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Computer Aided Geometric Design 14, 231–250 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Garland, M.: Multiresolution modeling: Survey and future opportunities. In: Eurographics 1999—State of the Art Reports, pp. 111–131 (1999)

    Google Scholar 

  14. Geomagic Studio: http://www.geomagic.com

  15. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A. K. Peters, Wellesley (1993)

    MATH  Google Scholar 

  16. ICEM Surf and RevEng: http://www.icem.com

  17. ImageWare: http://www.ugs.com/products/nx/imageware

  18. Itoh, T., Shimada, K.: Automatic Conversion of Triangular Meshes Into Quadrilateral Meshes with Directionality. International Journal of CAD/CAM 1, 11–21 (2002)

    Google Scholar 

  19. Kós, G., Martin, R.R., Várady, T.: Methods to recover constant radius rolling ball blends in reverse engineering. Computer Aided Geometric Design 17, 127–160 (2000)

    Article  MathSciNet  Google Scholar 

  20. Kós, G., Várady, T.: Parameterizing Complex Triangular Meshes. In: Lyche, T., Mazure, M.-L., Schumaker, L.L. (eds.) Curve and Surface Design, Saint-Malo, pp. 265–274. Nashboro Press (2002)

    Google Scholar 

  21. Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces to dense polygonal meshes. In: Proc. Siggraph Computer Graphics, pp. 313–324 (1996)

    Google Scholar 

  22. Langbein, F.C., Marshall, A.D., Martin, R.R.: Choosing consistent constraints for beautification of reverse engineered geometric models. Computer-Aided Design 36, 261–278 (2004)

    Article  Google Scholar 

  23. Lee, A., Sweldens, W., Schroeder, P., Cowsar, L., Dobkin, D.: MAPS: multiresolution adaptive parametrization of surfaces. In: Proc. SIGGRAPH Comput. Graphics, pp. 95–104 (1998)

    Google Scholar 

  24. Nakamoto, A.: Diagonal transformations in quadrangulations of surfaces. J. Graph Theory 21, 289–299 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Owen, S.J.: A Survey of Unstructured Mesh Generation Technology. In: Proceedings 7th International Meshing Roundtable, Dearborn, MI (October 1998), http://www.andrew.cmu.edu/user/sowen/survey/index.html

  26. ParaForm: http://www.metris.com

  27. Petitjean, S.: A survey of methods for recovering quadrics in triangle meshes. ACM Computing Surveys (2002)

    Google Scholar 

  28. PointMaster: http://www.knotenpunkt.com

  29. PolyWorks: http://www.innovmetric.com

  30. RapidForm: http://www.rapidform.com

  31. Renner, G., Weiss, V.: Exact and approximate computation of B-spline curves on surfaces. Computer-Aided Design 36, 351–362 (2004)

    Article  MATH  Google Scholar 

  32. Sabin, M.: Subdivision Surfaces. In: Farin, G., Hoschek, J., Kim, M.-S. (eds.) Handbook of Computer Aided Geometric Design, ch. 12, North-Holland, Amsterdam (2002)

    Google Scholar 

  33. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.H.: T-splines and T-NURCCs. ACM Transactions on Graphics 23, 477–484 (2003)

    Article  Google Scholar 

  34. TEBIS: http://www.tebis.com

  35. Várady, T., Martin, R.: Reverse Engineering. In: Farin, G., Hoschek, J., Kim, M.-S. (eds.) Handbook of Computer Aided Geometric Design, ch. 26, North-Holland, Amsterdam (2002)

    Google Scholar 

  36. Weiss, V., Andor, L., Renner, G., V’arady, T.: Advanced surface fitting techniques. Computer Aided Geometric Design 19(1), 19–42 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Werghi, N., Fisher, R., Robertson, C., Ashbrook, A.: Object reconstruction by incorporating geometric constraints in reverse engineering. Computer-Aided Design 31, 363–399 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Várady, T., Facello, M.A. (2005). New Trends in Digital Shape Reconstruction. In: Martin, R., Bez, H., Sabin, M. (eds) Mathematics of Surfaces XI. Lecture Notes in Computer Science, vol 3604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537908_24

Download citation

  • DOI: https://doi.org/10.1007/11537908_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28225-9

  • Online ISBN: 978-3-540-31835-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics