Abstract
The use of polygonal mesh representations for freeform geometry enables the formulation of many important geometry processing tasks as the solution of one or several linear systems. As a consequence, the key ingredient for efficient algorithms is a fast procedure to solve linear systems. A large class of standard problems can further be shown to lead more specifically to sparse, symmetric, and positive definite systems, that allow for a numerically robust and efficient solution.
In this paper we discuss and evaluate the use of sparse direct solvers for such kind of systems in geometry processing applications, since in our experiments they turned out to be superior even to highly optimized multigrid methods, but at the same time were considerably easier to use and implement. Although the methods we present are well known in the field of high performance computing, we observed that they are in practice surprisingly rarely applied to geometry processing problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proc. of ACM SIGGRAPH 1999, pp. 317–324 (1999)
Gill, P.R., Murray, W., Wright, M.: Practical Optimization. Academic Press, London (1981)
Kobbelt, L.: Discrete fairing. In: Proc. on 7th IMA Conference on the Mathematics of Surfaces, pp. 101–131 (1997)
Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003)
Taubin, G.: A signal processing approach to fair surface design. In: Proc. of ACM SIGGRAPH 1995, pp. 351–358 (1995)
Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 15–36 (1993)
Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. In: Proc. of Eurographics 2002, pp. 209–218 (2002)
Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.P.: Interactive multi-resolution modeling on arbitrary meshes. In: Proc. of ACM SIGGRAPH 1998, pp. 105–114 (1998)
Botsch, M., Kobbelt, L.: An intuitive framework for real-time freeform modeling. In: Proc. of ACM SIGGRAPH 2004, pp. 630–634 (2004)
Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Proc. of Eurographics symposium on Geometry Processing 2004, pp. 179–188 (2004)
Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with Poisson-based gradient field manipulation. Proc. of ACM SIGGRAPH 2004, 644–651 (2004)
Alexa, M.: Local control for mesh morphing. In: Proc. of Shape Modeling International 2001, pp. 209–215 (2001)
Alexa, M.: Differential coordinates for local mesh morphing and deformation. The Visual Computer 19, 105–114 (2003)
Xu, D., Zhang, H., Wang, Q., Bao, H.: Poisson shape interpolation. In: Proc. of ACM symposium on Solid and Physical Modeling 2005 (2005)
Ni, X., Garland, M., Hart, J.C.: Fair morse functions for extracting the topological structure of a surface mesh. In: Proc. of ACM SIGGRAPH 2004, pp. 613–622 (2004)
Sun, J., Jia, J., Tang, C.K., Shum, H.Y.: Poisson matting. In: Proc. of ACM SIGGRAPH 2004, pp. 315–321 (2004)
Stam, J.: Stable fluids. In: Proc. of ACM SIGGRAPH 1999, pp. 121–128 (1999)
Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: Proc. of ACM SIGGRAPH 2002, pp. 362–371 (2002)
Demmel, J.W.: Applied numerical linear algebra. SIAM, Philadelphia (1997)
Meurant, G.A.: Computer solution of large linear systems. Elsevier, Amsterdam (1999)
Golub, G.H., Loan, C.F.V.: Matrix Computations. Johns Hopkins University Press, Baltimore (1989)
Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)
Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)
Saad, Y., van der Vorst, H.A.: Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math. 123, 1–33 (2000)
Hestenes, M., Stiefel, E.: Method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)
Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Technical report, Carnegie Mellon University (1994)
Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Heidelberg (1986)
Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)
Bornemann, F.A., Deuflhard, P.: The cascading multigrid method for elliptic problems. Num. Math. 75, 135–152 (1996)
Kobbelt, L., Campagna, S., Seidel, H.P.: A general framework for mesh decimation. In: Proc. of Graphics Interface 1998, pp. 43–50 (1998)
Garland, M.: Multiresolution modeling: Survey & future opportunities. In: Eurographics State of the Art Report 1999 (1999)
Aksoylu, B., Khodakovsky, A., Schröder, P.: Multilevel Solvers for Unstructured Surface Meshes. SIAM Journal on Scientific Computing 26, 1146–1165 (2005)
Ray, N., Levy, B.: Hierarchical Least Squares Conformal Map. In: Proc. of Pacific Graphics 2003, pp. 263–270 (2003)
George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Matrices. Prentice-Hall, Englewood Cliffs (1981)
Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proc. of the 24th National Conference ACM, pp. 157–172 (1969)
Liu, J.W.H., Sherman, A.H.: Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee ordering algorithms for sparse matrices. SIAM J. Numerical Analysis 2, 198–213 (1976)
George, A., Liu, J.W.H.: The evolution of the minimum degree ordering algorithm. SIAM Review 31, 1–19 (1989)
Liu, J.W.H.: Modification of the minimum-degree algorithm by multiple elimination. ACM Trans. Math. Softw. 11, 141–153 (1985)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal of Sci. Comput. 20, 359–392 (1998)
Toledo, S., Chen, D., Rotkin, V.: Taucs: A library of sparse linear solvers., http://www.tau.ac.il/~stoledo/taucs
Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and Applications 20, 720–755 (1999)
Renard, Y., Pommier, J.: Gmm++: a generic template matrix C++ library, http://www-gmm.insa-toulouse.fr/getfem/gmm_intro
Aksoylu, B.: (personal communication)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Botsch, M., Bommes, D., Kobbelt, L. (2005). Efficient Linear System Solvers for Mesh Processing. In: Martin, R., Bez, H., Sabin, M. (eds) Mathematics of Surfaces XI. Lecture Notes in Computer Science, vol 3604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537908_5
Download citation
DOI: https://doi.org/10.1007/11537908_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28225-9
Online ISBN: 978-3-540-31835-4
eBook Packages: Computer ScienceComputer Science (R0)