Skip to main content

Efficient Linear System Solvers for Mesh Processing

  • Conference paper
Mathematics of Surfaces XI

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3604))

Abstract

The use of polygonal mesh representations for freeform geometry enables the formulation of many important geometry processing tasks as the solution of one or several linear systems. As a consequence, the key ingredient for efficient algorithms is a fast procedure to solve linear systems. A large class of standard problems can further be shown to lead more specifically to sparse, symmetric, and positive definite systems, that allow for a numerically robust and efficient solution.

In this paper we discuss and evaluate the use of sparse direct solvers for such kind of systems in geometry processing applications, since in our experiments they turned out to be superior even to highly optimized multigrid methods, but at the same time were considerably easier to use and implement. Although the methods we present are well known in the field of high performance computing, we observed that they are in practice surprisingly rarely applied to geometry processing problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proc. of ACM SIGGRAPH 1999, pp. 317–324 (1999)

    Google Scholar 

  2. Gill, P.R., Murray, W., Wright, M.: Practical Optimization. Academic Press, London (1981)

    MATH  Google Scholar 

  3. Kobbelt, L.: Discrete fairing. In: Proc. on 7th IMA Conference on the Mathematics of Surfaces, pp. 101–131 (1997)

    Google Scholar 

  4. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003)

    Google Scholar 

  5. Taubin, G.: A signal processing approach to fair surface design. In: Proc. of ACM SIGGRAPH 1995, pp. 351–358 (1995)

    Google Scholar 

  6. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 15–36 (1993)

    MATH  MathSciNet  Google Scholar 

  7. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. In: Proc. of Eurographics 2002, pp. 209–218 (2002)

    Google Scholar 

  8. Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.P.: Interactive multi-resolution modeling on arbitrary meshes. In: Proc. of ACM SIGGRAPH 1998, pp. 105–114 (1998)

    Google Scholar 

  9. Botsch, M., Kobbelt, L.: An intuitive framework for real-time freeform modeling. In: Proc. of ACM SIGGRAPH 2004, pp. 630–634 (2004)

    Google Scholar 

  10. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Proc. of Eurographics symposium on Geometry Processing 2004, pp. 179–188 (2004)

    Google Scholar 

  11. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with Poisson-based gradient field manipulation. Proc. of ACM SIGGRAPH 2004, 644–651 (2004)

    Google Scholar 

  12. Alexa, M.: Local control for mesh morphing. In: Proc. of Shape Modeling International 2001, pp. 209–215 (2001)

    Google Scholar 

  13. Alexa, M.: Differential coordinates for local mesh morphing and deformation. The Visual Computer 19, 105–114 (2003)

    MATH  Google Scholar 

  14. Xu, D., Zhang, H., Wang, Q., Bao, H.: Poisson shape interpolation. In: Proc. of ACM symposium on Solid and Physical Modeling 2005 (2005)

    Google Scholar 

  15. Ni, X., Garland, M., Hart, J.C.: Fair morse functions for extracting the topological structure of a surface mesh. In: Proc. of ACM SIGGRAPH 2004, pp. 613–622 (2004)

    Google Scholar 

  16. Sun, J., Jia, J., Tang, C.K., Shum, H.Y.: Poisson matting. In: Proc. of ACM SIGGRAPH 2004, pp. 315–321 (2004)

    Google Scholar 

  17. Stam, J.: Stable fluids. In: Proc. of ACM SIGGRAPH 1999, pp. 121–128 (1999)

    Google Scholar 

  18. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: Proc. of ACM SIGGRAPH 2002, pp. 362–371 (2002)

    Google Scholar 

  19. Demmel, J.W.: Applied numerical linear algebra. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  20. Meurant, G.A.: Computer solution of large linear systems. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  21. Golub, G.H., Loan, C.F.V.: Matrix Computations. Johns Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  22. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  23. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)

    Google Scholar 

  24. Saad, Y., van der Vorst, H.A.: Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math. 123, 1–33 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hestenes, M., Stiefel, E.: Method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)

    MATH  MathSciNet  Google Scholar 

  26. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Technical report, Carnegie Mellon University (1994)

    Google Scholar 

  27. Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Heidelberg (1986)

    Google Scholar 

  28. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  29. Bornemann, F.A., Deuflhard, P.: The cascading multigrid method for elliptic problems. Num. Math. 75, 135–152 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kobbelt, L., Campagna, S., Seidel, H.P.: A general framework for mesh decimation. In: Proc. of Graphics Interface 1998, pp. 43–50 (1998)

    Google Scholar 

  31. Garland, M.: Multiresolution modeling: Survey & future opportunities. In: Eurographics State of the Art Report 1999 (1999)

    Google Scholar 

  32. Aksoylu, B., Khodakovsky, A., Schröder, P.: Multilevel Solvers for Unstructured Surface Meshes. SIAM Journal on Scientific Computing 26, 1146–1165 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ray, N., Levy, B.: Hierarchical Least Squares Conformal Map. In: Proc. of Pacific Graphics 2003, pp. 263–270 (2003)

    Google Scholar 

  34. George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Matrices. Prentice-Hall, Englewood Cliffs (1981)

    Google Scholar 

  35. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proc. of the 24th National Conference ACM, pp. 157–172 (1969)

    Google Scholar 

  36. Liu, J.W.H., Sherman, A.H.: Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee ordering algorithms for sparse matrices. SIAM J. Numerical Analysis 2, 198–213 (1976)

    Article  MathSciNet  Google Scholar 

  37. George, A., Liu, J.W.H.: The evolution of the minimum degree ordering algorithm. SIAM Review 31, 1–19 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  38. Liu, J.W.H.: Modification of the minimum-degree algorithm by multiple elimination. ACM Trans. Math. Softw. 11, 141–153 (1985)

    Article  MATH  Google Scholar 

  39. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal of Sci. Comput. 20, 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  40. Toledo, S., Chen, D., Rotkin, V.: Taucs: A library of sparse linear solvers., http://www.tau.ac.il/~stoledo/taucs

  41. Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and Applications 20, 720–755 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  42. Renard, Y., Pommier, J.: Gmm++: a generic template matrix C++ library, http://www-gmm.insa-toulouse.fr/getfem/gmm_intro

  43. Aksoylu, B.: (personal communication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Botsch, M., Bommes, D., Kobbelt, L. (2005). Efficient Linear System Solvers for Mesh Processing. In: Martin, R., Bez, H., Sabin, M. (eds) Mathematics of Surfaces XI. Lecture Notes in Computer Science, vol 3604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537908_5

Download citation

  • DOI: https://doi.org/10.1007/11537908_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28225-9

  • Online ISBN: 978-3-540-31835-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics