Skip to main content

Smoothing of Time-Optimal Feedrates for Cartesian CNC Machines

  • Conference paper
Mathematics of Surfaces XI

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3604))

Abstract

Minimum-time traversal of curved paths by Cartesian CNC machines, subject to prescribed bounds on the magnitude of acceleration along each axis, usually involves a “bang-bang” control strategy in which the acceleration bound is realized by one or another of the machine axes at each instant during the motion. For a path specified by a polynomial parametric curve and prescribed acceleration bounds, the time-optimal feedrate may be expressed in terms of a C 0 piecewise-rational function of the curve parameter. This function entails sudden changes in either the identity of the limiting axis, or the sign of acceleration on a single limiting axis, incurring demands for instantaneous changes of motor torque that may not be physically realizable. A scheme is proposed herein to generate smoothed C 1 (slightly sub-optimal) feedrate functions, that incur only finite rates of change of motor torque and remain consistent with the axis acceleration bounds. An implementation on a 3-axis CNC mill driven by an open-architecture software controller is used to illustrate this scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. EIA Standard RS–274–D, Interchangeable variable block data format for positioning, contouring, and contouring/positioning numerically controlled machines, Electronic Industries Association, Engineering Dept., Washington, D.C (1979)

    Google Scholar 

  2. Bobrow, J.E., Dubowsky, S., Gibson, J.S.: Time–optimal control of robotic manipulators along specified paths. International Journal of Robotics Research 4(3), 3–17 (1985)

    Article  Google Scholar 

  3. Chou, J.–J., Yang, D.C.H.: Command generation for three–axis CNC machining. ASME Journal of Engineering for Industry 113, 305–310 (1991)

    Google Scholar 

  4. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, 4th edn. Academic Press, San Diego (1997)

    MATH  Google Scholar 

  5. Farouki, R.T., Manjunathaiah, J., Nicholas, D., Yuan, G.–F., Jee, S.: Variable feedrate CNC interpolators for constant material removal rates along Pythagorean–hodograph curves. Computer Aided Design 30, 631–640 (1998)

    Article  MATH  Google Scholar 

  6. Farouki, R.T., Shah, S.: Real–time CNC interpolators for Pythagorean–hodograph curves. Computer Aided Geometric Design 13, 583–600 (1996)

    Article  MATH  Google Scholar 

  7. Farouki, R.T., Tsai, Y.–F.: Exact Taylor series coefficients for variable–feedrate CNC curve interpolators. Computer Aided Design 33, 155–165 (2001)

    Article  Google Scholar 

  8. Florian, C.: An Introduction to the Theory of Equations. Macmillan Company, New York (1969)

    Google Scholar 

  9. Halkin, H.: A generalization of LaSalle’s “bang–bang” principle. SIAM Journal on Control 2, 199–202 (1965)

    MathSciNet  Google Scholar 

  10. Huang, J.–T., Yang, D.C.H.: A generalized interpolator for command generation of parametric curves in computer–controlled machines. In: Proceedings, Japan/USA Symposium on Flexible Automation. vol. 1, pp. 393–399. ASME (1992)

    Google Scholar 

  11. Komanduri, R., Subramanian, K., von Turkovich, B.F. (eds.): High Speed Machining, PED, vol. 12. ASME, New York (1984)

    Google Scholar 

  12. LaSalle, J.P.: The time optimal control problem. In: Cesari, L., LaSalle, J.P., Lefschetz, S. (eds.) Contributions to the Theory of Nonlinear Oscillations, vol. 5, Princeton Univ. Press, Princeton (1960)

    Google Scholar 

  13. Pfeiffer, F., Johanni, R.: A concept for manipulator trajectory planning. IEEE Journal of Robotics and Automation RA–3(2), 115–123 (1987)

    Article  Google Scholar 

  14. Shiller, Z., Lu, H.H.: Robust computation of path constrained time optimal motions, Proceedings. In: IEEE International Conference on Robotics and Automation, Cincinnati, OH, pp. 144–149 (1990)

    Google Scholar 

  15. Slotine, J.J.E., Yang, H.S.: Improving the efficiency of time–optimal path–following algorithms. IEEE Transaction on Robotics and Automation 5(1), 118–124 (1989)

    Article  Google Scholar 

  16. Smith, S., Tlusty, J.: Current trends in high–speed machining. ASME Journal of Manufacturing Science and Engineering 119, 664–666 (1997)

    Article  Google Scholar 

  17. Timar, S.D., Farouki, R.T., Boyadjieff, C.L.: Time-optimal feedrates along curved paths for Cartesian CNC machines with prescribed bounds on axis velocities and accelerations (2005) (preprint)

    Google Scholar 

  18. Timar, S.D., Farouki, R.T., Smith, T.S., Boyadjieff, C.L.: Algorithms for time-optimal control of CNC machines along curved tool paths. Robotics and Computer-Integrated Manufacturing 21(1), 37–53 (2005)

    Article  Google Scholar 

  19. Tlusty, J.: High–speed machining. CIRP Annals. 42, 733–738 (1993)

    Article  Google Scholar 

  20. Tsai, Y.–F., Farouki, R.T., Feldman, B.: Performance analysis of CNC interpolators for time–dependent feedrates along PH curves. Computer Aided Geometric Design 18, 245–265 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Uspensky, J.V.: Theory of Equations. McGraw-Hill, New York (1948)

    Google Scholar 

  22. Yang, D.C.H., Kong, T.: Parametric interpolator versus linear interpolator for precision CNC machining. Computer Aided Design 26, 225–234 (1994)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boyadjieff, C.L., Farouki, R.T., Timar, S.D. (2005). Smoothing of Time-Optimal Feedrates for Cartesian CNC Machines. In: Martin, R., Bez, H., Sabin, M. (eds) Mathematics of Surfaces XI. Lecture Notes in Computer Science, vol 3604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537908_6

Download citation

  • DOI: https://doi.org/10.1007/11537908_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28225-9

  • Online ISBN: 978-3-540-31835-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics